Mathematical modelling of hemodynamics of large blood vessels
Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 61-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief overview of mathematical models of contemporary applied hemodynamics is given. The special attention is paid to questions of development of effective computational algorithms implementing one-dimensional model. For this purpose TVD-monotonized schemes having the second order accuracy both in time and space are used. A number of test problems with analytical solutions are proposed. Questions of convergence and a choice of grid parameters for various schemes are investigated. The approaches using multiscale hemodynamics models are considered. An embedding of one-dimensional model of a single vessel into 0-dimensional model of vascular system is implemented. The possibility of using linear model for considered class problems of hemodynamics is analyzed.
@article{MM_2005_17_8_a5,
     author = {E. V. Astrakhantseva and V. Yu. Gidaspov and D. L. Reviznikov},
     title = {Mathematical modelling of hemodynamics of large blood vessels},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--80},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_8_a5/}
}
TY  - JOUR
AU  - E. V. Astrakhantseva
AU  - V. Yu. Gidaspov
AU  - D. L. Reviznikov
TI  - Mathematical modelling of hemodynamics of large blood vessels
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 61
EP  - 80
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_8_a5/
LA  - ru
ID  - MM_2005_17_8_a5
ER  - 
%0 Journal Article
%A E. V. Astrakhantseva
%A V. Yu. Gidaspov
%A D. L. Reviznikov
%T Mathematical modelling of hemodynamics of large blood vessels
%J Matematičeskoe modelirovanie
%D 2005
%P 61-80
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_8_a5/
%G ru
%F MM_2005_17_8_a5
E. V. Astrakhantseva; V. Yu. Gidaspov; D. L. Reviznikov. Mathematical modelling of hemodynamics of large blood vessels. Matematičeskoe modelirovanie, Tome 17 (2005) no. 8, pp. 61-80. http://geodesic.mathdoc.fr/item/MM_2005_17_8_a5/

[1] Karo K., Pedli T., Shtoter R., Sid U., Mekhanika krovoobrascheniya, Mir, M., 1981 | Zbl

[2] Pedli T., Gidrodinamika krupnykh krovenosnykh sosudov, Mir, M., 1983

[3] V. V. Vinnikov, D. L. Reviznikov, “Primenenie dekartovykh setok dlya resheniya uravnenii Nave–Stoksa v oblastyakh s krivolineinymi granitsami”, Matem. modelirovanie, 17:8 (2005), 15–30 | MR | Zbl

[4] B. A Cipra, “Failure in Sight for a Mathematical Model of the Heart”, SIAM News, 32:8 (1999)

[5] D. M. McQueen, C. S.Peskin, “Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity”, Mechanics for a New Mellennium, Proceedings of the 20th International Congress of Theoretical and Applied Mechanics, 429–444

[6] Abakumov M. V., Gavrilyuk K. V., N. B. Esikova, Koshelev V. B., Lukshin A. V., S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, “Matematicheskaya model gemodinamiki serdechno-sosudistoi sistemy”, Differentsialnye uravneniya, 33(7) (1997), 892–898 | MR | Zbl

[7] Abakumov M. V., Esikova N. B., Mukhin S. I., Sosnin N. V., Tishkin V. F., Favorskii A. P., Raznostnaya skhema resheniya zadach gemodinamiki na grafe, Preprint, Dialog-MGU, M., 1998 | MR

[8] Rathish Kumar B. V., Quarteroni A., Formaggia L., and Lamponi D., “On parallel computation of blood flow in human arterial network based on 1-D modelling”, Computing, 71 (2003), 321–351 | DOI | MR | Zbl

[9] Avanzolini G., Barbini P., Cappello A. and Cevenini G., “CADCS simulation of the closed-loop cardiovascular system”, International Journal of Biomedical Computations, 22 (1988), 39–49 | DOI

[10] Formaggia L., Nobile F., Quarteroni A., Veneziani A., “Multiscale modelling of the circulatory system: a preliminary analysis”, Computing and Visualization in Science, 1999, no. 2, 75–83 | DOI | MR | Zbl

[11] Volobuev A. N., Biofizika, Samar. Dom pechati, Samara, 1999, 168 pp.

[12] Fukushima T. and Homma T., “A Logistic-type curve fits pressure-diameter relationship for relaxed and contracted dog renal arteries”, Biorheology, 25 (1988), 37–48 | MR

[13] Biyue Liu, Dalin Tang, “A numerical simulation of viscous flows in collapsible tubes with stenoses”, Applied Numerical Mathematics, 32 (2000), 87–101 | DOI | MR | Zbl

[14] M. W. Collins, G. Pontrelli, M. A. Atherton (eds.), Wall-Fluid Interactions in Physiological Flows, Advances in Computational Bioengineering, 6, WIT press, 2004, 204 pp.

[15] Kantor B. Ya., Kundelev A. Yu., “Analiz vliyaniya nachalnogo natyazheniya tolstostennykh sosudov na potok zhidkosti v nikh”, Dopovidi Natsionalnoi Akademii Nauk Ukraini, 1999, no. 11, 167–170

[16] Rathish Kumar B. V., Yamaguchi T., Liu H., Himeno R., “Parallel computation of LV hemodynamics”, Riken Review, 40 (2001)

[17] U. G. Pirumov, “Analiticheskoe i chislennoe issledovanie gemodinamiki krupnykh sosudov”, Matem. modelirovanie, 13:6 (2001), 47–61 | MR | Zbl

[18] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matem. modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[19] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[20] LeVeque R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics, Birkhäuser, Basel, 1992 | MR | Zbl

[21] Gottlieb S., Shu C. W., Tadmor E., “Strong Stability Preserving High-order Time Discretization Methods”, Siam Review, 43:1 (2001), 89–101 | DOI | MR

[22] Astrakhantseva E. V., Gidaspov V. Yu., Reviznikov D. L., “Primenenie TVD-skhem dlya resheniya uravnenii gemodinamiki”, Elektronnyi zhurnal Trudy MAI, 2005, no. 19 | Zbl

[23] Ashmetkov I. V., Mukhin S. I., Sosnin N. V., Favorskii A. P., Khrulenko A. B., Chastnye resheniya uravnenii gemodinamiki, Preprint, Dialog-MGU, M., 1999, 43 pp.

[24] Pontrelli G. A, “A Multiscale Approach for Modelling Wave Propagation in an Arterial Segment”, Computer Methods in Biomechanics and Biomedical Engineering, 7:2 (2004), 79–89 | DOI

[25] Segers P., Verdonck P., Non-invasive estimation of total arterial compliance, 1998-04, Von Karmann Institute Lecture Notes, 1998