Normalization of the non-autonomic linear Hamiltonian system with a small parameter
Matematičeskoe modelirovanie, Tome 17 (2005) no. 6, pp. 33-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for constructing the normalizing transformation for the linear Hamiltonian system of differential equations with periodic coefficients is proposed where the matrix of transformation is represented in the form of power series in a small parameter. The recurrence relations for coefficients of the corresponding series are obtained and the matrices of transformation for the second and the fourth order systems arising in the study of the stability of equilibrium solutions in restricted elliptic many-body problems are calculated.
@article{MM_2005_17_6_a3,
     author = {A. N. Prokopenya},
     title = {Normalization of the non-autonomic linear {Hamiltonian} system with a small parameter},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--42},
     year = {2005},
     volume = {17},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_6_a3/}
}
TY  - JOUR
AU  - A. N. Prokopenya
TI  - Normalization of the non-autonomic linear Hamiltonian system with a small parameter
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 33
EP  - 42
VL  - 17
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_6_a3/
LA  - ru
ID  - MM_2005_17_6_a3
ER  - 
%0 Journal Article
%A A. N. Prokopenya
%T Normalization of the non-autonomic linear Hamiltonian system with a small parameter
%J Matematičeskoe modelirovanie
%D 2005
%P 33-42
%V 17
%N 6
%U http://geodesic.mathdoc.fr/item/MM_2005_17_6_a3/
%G ru
%F MM_2005_17_6_a3
A. N. Prokopenya. Normalization of the non-autonomic linear Hamiltonian system with a small parameter. Matematičeskoe modelirovanie, Tome 17 (2005) no. 6, pp. 33-42. http://geodesic.mathdoc.fr/item/MM_2005_17_6_a3/