Polinomial decomposion method for 3-D vector tomography problems
Matematičeskoe modelirovanie, Tome 17 (2005) no. 5, pp. 52-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of series expansion has been developed for the inversion of the $\mathcal X$-ray transform of three-dimensional (3-D) vector fields, and the corresponding vector central-slice theorem derived. The simulation demonstrating the 3-D reconstruction of the model vector fields is presented.
@article{MM_2005_17_5_a5,
     author = {A. L. Balandin},
     title = {Polinomial decomposion method for {3-D} vector tomography problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {52--66},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_5_a5/}
}
TY  - JOUR
AU  - A. L. Balandin
TI  - Polinomial decomposion method for 3-D vector tomography problems
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 52
EP  - 66
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_5_a5/
LA  - ru
ID  - MM_2005_17_5_a5
ER  - 
%0 Journal Article
%A A. L. Balandin
%T Polinomial decomposion method for 3-D vector tomography problems
%J Matematičeskoe modelirovanie
%D 2005
%P 52-66
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_5_a5/
%G ru
%F MM_2005_17_5_a5
A. L. Balandin. Polinomial decomposion method for 3-D vector tomography problems. Matematičeskoe modelirovanie, Tome 17 (2005) no. 5, pp. 52-66. http://geodesic.mathdoc.fr/item/MM_2005_17_5_a5/