Minimal sizes in continuous medium mechanics problems
Matematičeskoe modelirovanie, Tome 17 (2005) no. 4, pp. 27-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Powerful computer systems with hundreds and thousands processors reveal new possibilities in mathematical modeling. But the considerable success in creating of computer handware does not eliminate the difficulties of sequential algorithms adaptation to parallel systems as well as the problem of results verification etc. The article also deals with the question of correctness of mathematical models and smoothing of the solution at a characteristic distance $d$. The choice of the minimal distance is discussed.
@article{MM_2005_17_4_a2,
     author = {B. N. Chetverushkin},
     title = {Minimal sizes in continuous medium mechanics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--39},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_4_a2/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
TI  - Minimal sizes in continuous medium mechanics problems
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 27
EP  - 39
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_4_a2/
LA  - ru
ID  - MM_2005_17_4_a2
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%T Minimal sizes in continuous medium mechanics problems
%J Matematičeskoe modelirovanie
%D 2005
%P 27-39
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_4_a2/
%G ru
%F MM_2005_17_4_a2
B. N. Chetverushkin. Minimal sizes in continuous medium mechanics problems. Matematičeskoe modelirovanie, Tome 17 (2005) no. 4, pp. 27-39. http://geodesic.mathdoc.fr/item/MM_2005_17_4_a2/