Wave motion in nonhomogeneous Love problem
Matematičeskoe modelirovanie, Tome 17 (2005) no. 1, pp. 93-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inhomogeneous problem Lyave, which solution in a scope of a loading, built by a method of a contour integration is considered. Thus the rule of bypass of poles of an integrand function, the bound with an operating loading for the first time is established. Methods, designed at study to inhomogeneous Lyave problem, can be applied at study of inhomogeneous boundary value Lamb problem and other similar problems for electrostatic and the anisotropic mediums consisting of a finite number of bands and a half-plane. At the end of a paper outcomes of numerical calculations are presented.
@article{MM_2005_17_1_a7,
     author = {O. A. Belokon},
     title = {Wave motion in nonhomogeneous {Love} problem},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--108},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_1_a7/}
}
TY  - JOUR
AU  - O. A. Belokon
TI  - Wave motion in nonhomogeneous Love problem
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 93
EP  - 108
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_1_a7/
LA  - ru
ID  - MM_2005_17_1_a7
ER  - 
%0 Journal Article
%A O. A. Belokon
%T Wave motion in nonhomogeneous Love problem
%J Matematičeskoe modelirovanie
%D 2005
%P 93-108
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_1_a7/
%G ru
%F MM_2005_17_1_a7
O. A. Belokon. Wave motion in nonhomogeneous Love problem. Matematičeskoe modelirovanie, Tome 17 (2005) no. 1, pp. 93-108. http://geodesic.mathdoc.fr/item/MM_2005_17_1_a7/