Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2005_17_12_a2, author = {L. A. Krukier and G. V. Muratova and T. N. Subbotina}, title = {Effective difference schemes for dynamic convection-diffusion equation with dominate convection}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {80--86}, publisher = {mathdoc}, volume = {17}, number = {12}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2005_17_12_a2/} }
TY - JOUR AU - L. A. Krukier AU - G. V. Muratova AU - T. N. Subbotina TI - Effective difference schemes for dynamic convection-diffusion equation with dominate convection JO - Matematičeskoe modelirovanie PY - 2005 SP - 80 EP - 86 VL - 17 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2005_17_12_a2/ LA - ru ID - MM_2005_17_12_a2 ER -
%0 Journal Article %A L. A. Krukier %A G. V. Muratova %A T. N. Subbotina %T Effective difference schemes for dynamic convection-diffusion equation with dominate convection %J Matematičeskoe modelirovanie %D 2005 %P 80-86 %V 17 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2005_17_12_a2/ %G ru %F MM_2005_17_12_a2
L. A. Krukier; G. V. Muratova; T. N. Subbotina. Effective difference schemes for dynamic convection-diffusion equation with dominate convection. Matematičeskoe modelirovanie, Tome 17 (2005) no. 12, pp. 80-86. http://geodesic.mathdoc.fr/item/MM_2005_17_12_a2/
[1] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, Izd. URSS, M., 1998, 272 pp. | MR
[2] K. W. Morton, “Numerical Solution of Convection-Diffusion Problems”, Appl. Math. Mathematical Computation, 12, Chapman and Hall, London, 1996 | MR | Zbl
[3] B. Fischer, A. Ramage, D. Silvester, A. Wathen, Towards parameter-free streamline upwinding for advection-diffusion problems, Strathclyde Mathematics Research Report no 37, 1996, 18 pp. | MR
[4] Y.-T. Shih, H. C. Elman, Iterative methods for stabilized discrete convection-diffusion problems, Technical Report, Department of Computer Science, University of Maryland, College Park, 1998 | MR
[5] J. Zhang, L. Ge, Accuracy, Robustness, and Efficiency Comparison in Iterative Computation of Convection Diffusion Equation with Boundary Layers, Technical Report no 291-99, Department of Computer Science, University of Kentucky, Lexington, 1999 | MR | Zbl
[6] H. Schlichting, Boundary Layer Theory, 7th ed., McGraw Hill, New York, 1979 | MR | Zbl
[7] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy. Vvedenie v teoriyu, Nauka, M., 1977, 439 pp. | MR
[8] Rikhtmaier R. D., Morton K., Raznostnye metody resheniya kraevykh zadach, Mir, M., 1972, 418 pp. | MR
[9] Peaceman D. W., Rachford H. H., “The Numerical Solution of Parabolic and Elliptic differential equations”, SIAM J., 3 (1955), 28–41 | MR | Zbl
[10] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 616 pp. | MR | Zbl
[11] Krukier L. A., Subbotina T. N., “Ob odnom klasse treugolnykh kososimmetrichnykh skhem resheniya nestatsionarnogo uravneniya konvektsii-diffuzii”, Izv. vuzov. Matem., 2004, no. 5, 41–46 | MR | Zbl
[12] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 415 pp. | MR | Zbl
[13] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matem., 1979, no. 7, 41–52 | MR | Zbl
[14] Krukier L. A., “Matematicheskoe modelirovanie gidrodinamiki Azovskogo morya pri realizatsii proektov rekonstruktsii ego ekosistemy”, Matem. modelirovanie, 3:9 (1991), 3–20 | MR
[15] Markus M., Mink Kh., Obzor po teorii matrits i matrichnym neravenstvam, Nauka, M., 1972, 232 pp. | MR
[16] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR