Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2005_17_11_a9, author = {D. L. Golovashkin}, title = {Parallel algorithms for solving tridiagonal network equations by encountering runs method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {118--128}, publisher = {mathdoc}, volume = {17}, number = {11}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2005_17_11_a9/} }
TY - JOUR AU - D. L. Golovashkin TI - Parallel algorithms for solving tridiagonal network equations by encountering runs method JO - Matematičeskoe modelirovanie PY - 2005 SP - 118 EP - 128 VL - 17 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2005_17_11_a9/ LA - ru ID - MM_2005_17_11_a9 ER -
D. L. Golovashkin. Parallel algorithms for solving tridiagonal network equations by encountering runs method. Matematičeskoe modelirovanie, Tome 17 (2005) no. 11, pp. 118-128. http://geodesic.mathdoc.fr/item/MM_2005_17_11_a9/
[1] Mirenkov N. N., “Parallelnye algoritmy dlya resheniya zadach na odnorodnykh vychislitelnykh sistemakh”, Vychislitelnye sistemy, 57, IM SO AN SSSR, Novosibirsk, 1973, 3–32
[2] Ortega Dzheims M., Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, perevod s angl. Kh. D. Ikramova, I. E. Kaporina, ed. Kh. D. Ikramov, Mir, M., 1991, 364 pp. | MR
[3] Kudryashova T. A., Polyakov S. V., “O nekotorykh metodakh resheniya kraevykh zadach na mnogoprotsessornykh vychislitelnykh sistemakh”, Sb. trudov 4-oi mezhdunarodnoi nauchnoi konferentsii “Matematicheskie modeli nelineinykh vozbuzhdenii, perenosa, dinamiki, upravleniya v kondensirovannykh sistemakh i drugikh sredakh” (Moskva, 27 iyunya–1 iyulya 2000 g.), eds. L. A. Uvarov, A. E. Arinshtein, Stankin, M., 2001, 134–145
[4] Zaruchevskaya (Lozinskaya) G. V., Sevostyanova O. V., Yufryakova O. A., Kozhin I. N., “Melkozernistyi lokalno-parallelnyi algoritm dlya chetyrekhtochechnoi neyavnoi raznostnoi skhemy uravneniya teploprovodnosti”, Materialy tretego Mezhdunarodnogo nauchno-prakticheskogo seminara, ed. prof. R. G. Strongin, Izd-vo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2003, 59–64
[5] Valkovskii V. A., Kotov V. E., Marchuk A. G., Mirenkov N. N., Elementy parallelnogo programmirovaniya, Radio i svyaz, M., 1983, 239 pp.
[6] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 561 pp. | MR
[7] L. Yu. Biryukova, B. N. Chetverushkin, “O vozmozhnosti realizatsii kvazigidrodinamicheskoi modeli poluprovodnikovoi plazmy na mnogoprotsessornykh vychislitelnykh sistemakh”, Matem. modelirovanie, 3:6 (1991), 61–71
[8] T. G. Elizarova, B. N. Chetverushkin, “Primenenie mnogoprotsessornykh transpyuternykh sistem dlya resheniya zadach matematicheskoi fiziki”, Matem. modelirovanie, 4:11 (1992), 75–100
[9] Milyukova O. Yu., “Parallelnyi variant obobschennogo poperemenno-treugolnogo metoda dlya resheniya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2002–2012 | MR | Zbl
[10] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 614 pp. | MR
[11] Kravchuk V. V., Popov S. B., Privalov A. Yu., Fursov V. A., Shustov V. A., Vvedenie v programmirovanie dlya parallelnykh EVM i klasterov: Uchebn. posobie, eds. V.A. Fursov, Samar. nauchnyi tsentr RAN, Samar. gos. aerokosm. un-t, Samara, 2000, 87 pp.