Modelling of unsteady flows for large time intervals on the base of implicit high order schemes
Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 59-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Implicit third order Runge–Kutta schemes are constructed for multydimensional transfer equation with diffusion and for compressible gas equations. Various sets of coefficients are found to provide absolute stability of scheme. The results of numerical calculations are presented.
@article{MM_2004_16_8_a4,
     author = {V. I. Pinchukov},
     title = {Modelling of unsteady flows for large time intervals on the base of implicit high order schemes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/}
}
TY  - JOUR
AU  - V. I. Pinchukov
TI  - Modelling of unsteady flows for large time intervals on the base of implicit high order schemes
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 59
EP  - 69
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/
LA  - ru
ID  - MM_2004_16_8_a4
ER  - 
%0 Journal Article
%A V. I. Pinchukov
%T Modelling of unsteady flows for large time intervals on the base of implicit high order schemes
%J Matematičeskoe modelirovanie
%D 2004
%P 59-69
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/
%G ru
%F MM_2004_16_8_a4
V. I. Pinchukov. Modelling of unsteady flows for large time intervals on the base of implicit high order schemes. Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 59-69. http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/

[1] Pinchukov V. I., Shu Ch.-V., Chislennye metody vysokikh poryadkov dlya zadach aerogidrodinamiki, Izd-vo SO RAN, Novosibirsk, 2000, 232 pp.

[2] Shu C.-W., “Total-Variation-Diminishing Time Discretizations”, SIAM J. Sci. Stat. Comput., 9:6 (1988), 1073–1084 | DOI | MR | Zbl

[3] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl

[4] Burstein S. Z., Mirin A. A., “Third order difference methods for hyperbolic equations”, J. Comput. Phys., 5:3 (1970), 547–571 | DOI | MR | Zbl

[5] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh prilozheniya k problemam aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[6] Pinchukov V. I., “O neyavnykh skhemakh tipa Runge–Kutty tretego poryadka po vremeni”, Vychislitelnye tekhnologii, 4:2 (1999), 59–73 | MR | Zbl

[7] Pinchukov V. I., “Absolyutno ustoichivye skhemy Runge–Kutty tretego poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 39:11 (1999), 1855–1868 | MR | Zbl

[8] Pinchukov V. I., “O chislennom reshenii uravnenii szhimaemogo gaza neyavnoi skhemoi Runge–Kutty tretego poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 42:6 (2002), 898–907 | MR

[9] Pinchukov V. I., “Sravnenie neyavnykh skhem Runge–Kutty tretego poryadka”, Vychislitelnye tekhnologii, 7:5 (2002), 44–57 | MR | Zbl

[10] Vorozhtsov E. V., Skobelev V. Yu., “O primenenii spinornogo ischisleniya dlya issledovaniya ustoichivosti raznostnykh skhem”, Zhurn. vychislit. matematiki i mat. fiziki, 43:2 (2003), 235–250 | MR | Zbl

[11] Pinchukov V. I., “O neyavnykh absolyutno ustoichivykh skhemakh Runge–Kutty chetvertogo poryadka”, Vychislitelnye tekhnologii, 7:1 (2002), 96–105 | MR | Zbl

[12] Pinchukov V. I., “O chislennom issledovanii transzvukovykh turbulentnykh techenii vozle kryla neyavnymi skhemami vysokikh poryadkov”, Vychislitelnye tekhnologii, 6:2 (2001), 110–121 | MR | Zbl

[13] Jameson A., Schmidt W., Turcel E., “Numerical solution of the Euler equations by finite-volume method using Runge-Kutta time stepping schemes”, AIAA Paper, 1981, 81–1259

[14] Pinchukov V. I., “Nelineinye raznostnye filtry i skhemy vysokikh poryadkov dlya zadach aerodinamiki”, Matematicheskoe modelirovanie, 11:9 (1999), 101–115 | MR | Zbl