Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_8_a4, author = {V. I. Pinchukov}, title = {Modelling of unsteady flows for large time intervals on the base of implicit high order schemes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--69}, publisher = {mathdoc}, volume = {16}, number = {8}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/} }
TY - JOUR AU - V. I. Pinchukov TI - Modelling of unsteady flows for large time intervals on the base of implicit high order schemes JO - Matematičeskoe modelirovanie PY - 2004 SP - 59 EP - 69 VL - 16 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/ LA - ru ID - MM_2004_16_8_a4 ER -
V. I. Pinchukov. Modelling of unsteady flows for large time intervals on the base of implicit high order schemes. Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 59-69. http://geodesic.mathdoc.fr/item/MM_2004_16_8_a4/
[1] Pinchukov V. I., Shu Ch.-V., Chislennye metody vysokikh poryadkov dlya zadach aerogidrodinamiki, Izd-vo SO RAN, Novosibirsk, 2000, 232 pp.
[2] Shu C.-W., “Total-Variation-Diminishing Time Discretizations”, SIAM J. Sci. Stat. Comput., 9:6 (1988), 1073–1084 | DOI | MR | Zbl
[3] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[4] Burstein S. Z., Mirin A. A., “Third order difference methods for hyperbolic equations”, J. Comput. Phys., 5:3 (1970), 547–571 | DOI | MR | Zbl
[5] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh prilozheniya k problemam aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR
[6] Pinchukov V. I., “O neyavnykh skhemakh tipa Runge–Kutty tretego poryadka po vremeni”, Vychislitelnye tekhnologii, 4:2 (1999), 59–73 | MR | Zbl
[7] Pinchukov V. I., “Absolyutno ustoichivye skhemy Runge–Kutty tretego poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 39:11 (1999), 1855–1868 | MR | Zbl
[8] Pinchukov V. I., “O chislennom reshenii uravnenii szhimaemogo gaza neyavnoi skhemoi Runge–Kutty tretego poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 42:6 (2002), 898–907 | MR
[9] Pinchukov V. I., “Sravnenie neyavnykh skhem Runge–Kutty tretego poryadka”, Vychislitelnye tekhnologii, 7:5 (2002), 44–57 | MR | Zbl
[10] Vorozhtsov E. V., Skobelev V. Yu., “O primenenii spinornogo ischisleniya dlya issledovaniya ustoichivosti raznostnykh skhem”, Zhurn. vychislit. matematiki i mat. fiziki, 43:2 (2003), 235–250 | MR | Zbl
[11] Pinchukov V. I., “O neyavnykh absolyutno ustoichivykh skhemakh Runge–Kutty chetvertogo poryadka”, Vychislitelnye tekhnologii, 7:1 (2002), 96–105 | MR | Zbl
[12] Pinchukov V. I., “O chislennom issledovanii transzvukovykh turbulentnykh techenii vozle kryla neyavnymi skhemami vysokikh poryadkov”, Vychislitelnye tekhnologii, 6:2 (2001), 110–121 | MR | Zbl
[13] Jameson A., Schmidt W., Turcel E., “Numerical solution of the Euler equations by finite-volume method using Runge-Kutta time stepping schemes”, AIAA Paper, 1981, 81–1259
[14] Pinchukov V. I., “Nelineinye raznostnye filtry i skhemy vysokikh poryadkov dlya zadach aerodinamiki”, Matematicheskoe modelirovanie, 11:9 (1999), 101–115 | MR | Zbl