The asymptotic solution of weak nonlinear differential equation system “reaction-diffusion” type
Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 50-58
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotic representation of the solution of the singularly pertorbed weak nonlinear differential equations system “reaction-diffusion” type is constracted. The main feature of the problem is the transition internal layer, which is discribed by nonlinear Burgers-type parabolic equation.
@article{MM_2004_16_8_a3,
author = {A. V. Nesterov and O. V. Shuliko},
title = {The asymptotic solution of weak nonlinear differential equation system {\textquotedblleft}reaction-diffusion{\textquotedblright} type},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {50--58},
year = {2004},
volume = {16},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2004_16_8_a3/}
}
TY - JOUR AU - A. V. Nesterov AU - O. V. Shuliko TI - The asymptotic solution of weak nonlinear differential equation system “reaction-diffusion” type JO - Matematičeskoe modelirovanie PY - 2004 SP - 50 EP - 58 VL - 16 IS - 8 UR - http://geodesic.mathdoc.fr/item/MM_2004_16_8_a3/ LA - ru ID - MM_2004_16_8_a3 ER -
A. V. Nesterov; O. V. Shuliko. The asymptotic solution of weak nonlinear differential equation system “reaction-diffusion” type. Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 50-58. http://geodesic.mathdoc.fr/item/MM_2004_16_8_a3/
[1] Vasileva A. V., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Mir, M., 1973, 272 pp. | MR
[2] Vasileva A. V., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978, 262 pp. | MR
[3] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR
[4] A. V. Nesterov, “Ob asimptotike resheniya sistemy uravnenii “diffuziya-sorbtsiya” pri malykh koefitsientakh diffuzii”, ZhVMiMF, 29, 13:9 (1989), 1318–1330 | MR
[5] A. V. Nesterov, “Asimptotika resheniya slabo nelineinoi sistemy differentsialnykh uravnenii tipa “reaktsiya-perenos””, Matematicheskoe modelirovanie, 13:12 (2001), 58–64 | MR | Zbl