Modeling of the FPU recurrence with reversible stochastization within the framework of coupled stand art mappings
Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 124-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of coupled standard mappings has been proposed for description of the FPU recurrence with a reversible stochastization. Numerical study showed that the parameters of high frequency mapping defines the characteristics of the FPU recurrence described within the framework of low frequency mapping.
@article{MM_2004_16_8_a10,
     author = {A. A. Berezin},
     title = {Modeling of the {FPU} recurrence with reversible stochastization within the framework of coupled stand art mappings},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {124--128},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_8_a10/}
}
TY  - JOUR
AU  - A. A. Berezin
TI  - Modeling of the FPU recurrence with reversible stochastization within the framework of coupled stand art mappings
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 124
EP  - 128
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_8_a10/
LA  - ru
ID  - MM_2004_16_8_a10
ER  - 
%0 Journal Article
%A A. A. Berezin
%T Modeling of the FPU recurrence with reversible stochastization within the framework of coupled stand art mappings
%J Matematičeskoe modelirovanie
%D 2004
%P 124-128
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_8_a10/
%G ru
%F MM_2004_16_8_a10
A. A. Berezin. Modeling of the FPU recurrence with reversible stochastization within the framework of coupled stand art mappings. Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 124-128. http://geodesic.mathdoc.fr/item/MM_2004_16_8_a10/

[1] Yuen G., Leik. B., Nelineinaya dinamika gravitatsionnykh voln na glubokoi vode, Mekhanika. Novoe v zarubezhnoi nauke, Mir, M., 1987

[2] Berezin A. A., “Matematicheskaya model polnogo vozvrata Fermi–Pasta–Ulama (FPU) v ramkakh sistemy svyazannykh uravnenii Kortevega de Vriza (KDV) i sinus-Gordona (SG)”, Matematicheskoe modelirovanie, 14:10 (2002), 105–108 | MR | Zbl

[3] Berezin A. A., “Vzaimodeistvie polnogo vozvrata Fermi–Pasta–Ulama s fluktuatsiyami sredy”, Matematicheskoe modelirovanie, 15:10 (2003), 51–59 | Zbl

[4] Lichtenberg, Lieberman M. A., “Regular and Chaotic Dynamics”, Applied Mathematical Sciences, 38, Springer-Verlag, 1991, 443–456

[5] Zaslavskii G. M., Sagdeev R. Z., Usikov D. A., Slabyi khaos i kvaziregulyarnye struktury, Nauka, M., 1991, 235 pp. | MR | Zbl