Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 44-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are presented the results of constructing of new nonlinear finite-difference scheme for solution a Cauchy problem for linear and quasi-linear advection equation with finite initial data. The scheme is built by means of monotonization of K. I. Babenko (“square”) scheme by introduction of artificial viscosity with “limiters”.
@article{MM_2004_16_6_a9,
     author = {T. A. Alexandrikova and M. P. Galanin and T. G. Elenina},
     title = {Nonlinear monotonization of {K.\,I.~Babenko} scheme for the numerical solution of the advection equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--47},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/}
}
TY  - JOUR
AU  - T. A. Alexandrikova
AU  - M. P. Galanin
AU  - T. G. Elenina
TI  - Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 44
EP  - 47
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/
LA  - ru
ID  - MM_2004_16_6_a9
ER  - 
%0 Journal Article
%A T. A. Alexandrikova
%A M. P. Galanin
%A T. G. Elenina
%T Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
%J Matematičeskoe modelirovanie
%D 2004
%P 44-47
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/
%G ru
%F MM_2004_16_6_a9
T. A. Alexandrikova; M. P. Galanin; T. G. Elenina. Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 44-47. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/

[1] K. I. Babenko, Osnovy chislennogo analiza, NITs “RKhD”, Moskva–Izhevsk, 2002, 848 pp.

[2] K. V. Vyaznikov, V. F. Tishkin, A. P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poryadka approksimatsii dlya sistem uravnenii giperbolicheskogo tipa”, Matematicheskoe modelirovanie, 1:5 (1989), 95–120 | MR | Zbl

[3] A. A. Ivanov, V. F. Tishkin, A. P. Favorskii, A. N. Yatsuk, Postroenie kvazimonotonnoi skhemy povyshennogo poryadka approksimatsii dlya uravneniya perenosa, Prepr. IPM im. M. V. Keldysha RAN, 69, 1993, 25 pp.

[4] J. P. Boris, D. L. Book, “Flux corrected transport, I, SHASTA”, J. Comp. Phys., 11 (1973), 33–69

[5] S. Osher, S. Chakravarthy, “High resolution schemes and the entropy conditions”, SIAM J. Num. Analysis, 21 (1984), 955–984 | DOI | MR | Zbl

[6] C. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko i dr., Chislennye resheniya mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | Zbl

[7] V. M. Goloviznin, S. A. Karabasov, Metod pryzhkovogo perenosa dlya chislennogo resheniya giperbolicheskikh uravnenii. Tochnyi algoritm dlya modelirovaniya konvektsii na eilerovykh setkakh, Prepr. IBRAE, IBRAE-2000-04, 2002, 40 pp.

[8] M. N. Galanin, T. G. Elenina, Nelineinaya monotonizatsiya raznostnykh skhem dlya lineinogo uravneniya perenosa, Prepr. IPM im. M. V. Keldysha RAN, 44, 1999, 30 pp.

[9] M. N. Galanin, T. G. Elenina, Nelineinaya monotonizatsiya skhemy K. I. Babenko (“kvadrat”) dlya uravneniya perenosa, Prepr. IPM im. M. V. Keldysha RAN, 4, 2002, 26 pp. | Zbl

[10] T. A. Aleksandrikova, M. N. Galanin, Nelineinaya monotonizatsiya skhemy K. I. Babenko dlya chislennogo resheniya kvazilineinogo uravneniya perenosa, Prepr. IPM im. M. V. Keldysha RAN, 62, 2003, 35 pp.

[11] T. G. Elenina, Reshenie nelineinoi monotonizirovannoi raznostnoi skhemy K. I. Babenko ("kvadrat"), Prepr. IPM im. M. V. Keldysha RAN, 75, 2002, 34 pp.