Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 44-47

Voir la notice de l'article provenant de la source Math-Net.Ru

There are presented the results of constructing of new nonlinear finite-difference scheme for solution a Cauchy problem for linear and quasi-linear advection equation with finite initial data. The scheme is built by means of monotonization of K. I. Babenko (“square”) scheme by introduction of artificial viscosity with “limiters”.
@article{MM_2004_16_6_a9,
     author = {T. A. Alexandrikova and M. P. Galanin and T. G. Elenina},
     title = {Nonlinear monotonization of {K.\,I.~Babenko} scheme for the numerical solution of the advection equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--47},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/}
}
TY  - JOUR
AU  - T. A. Alexandrikova
AU  - M. P. Galanin
AU  - T. G. Elenina
TI  - Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 44
EP  - 47
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/
LA  - ru
ID  - MM_2004_16_6_a9
ER  - 
%0 Journal Article
%A T. A. Alexandrikova
%A M. P. Galanin
%A T. G. Elenina
%T Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation
%J Matematičeskoe modelirovanie
%D 2004
%P 44-47
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/
%G ru
%F MM_2004_16_6_a9
T. A. Alexandrikova; M. P. Galanin; T. G. Elenina. Nonlinear monotonization of K.\,I.~Babenko scheme for the numerical solution of the advection equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 44-47. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a9/