Structure of free supersonic jets studied by means of the Boltzmann equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 31-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different schemes for direct solving the Boltzmann equation are used. Parallel algorithms with multiprocessors technique are applied for free jet problems in a wide range of Knudsen numbers. The attention is focused on the study of mechanism of the transition to instability in a mixing layer. Vortices of the Goertler–Taylor type are appeared. At the supercritical regime the stochastic character of pulsation is confirmed for small kinetic scales of the step of time.
@article{MM_2004_16_6_a6,
     author = {V. V. Aristov and S. A. Zabelok and A. A. Frolova},
     title = {Structure of free supersonic jets studied by means of the {Boltzmann} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--34},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a6/}
}
TY  - JOUR
AU  - V. V. Aristov
AU  - S. A. Zabelok
AU  - A. A. Frolova
TI  - Structure of free supersonic jets studied by means of the Boltzmann equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 31
EP  - 34
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a6/
LA  - ru
ID  - MM_2004_16_6_a6
ER  - 
%0 Journal Article
%A V. V. Aristov
%A S. A. Zabelok
%A A. A. Frolova
%T Structure of free supersonic jets studied by means of the Boltzmann equation
%J Matematičeskoe modelirovanie
%D 2004
%P 31-34
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a6/
%G ru
%F MM_2004_16_6_a6
V. V. Aristov; S. A. Zabelok; A. A. Frolova. Structure of free supersonic jets studied by means of the Boltzmann equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 31-34. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a6/

[1] Aristov V. V., Zabelok S. A., “Vikhrevaya struktura neustoichivoi strui, izuchaemoi na osnove uravneniya Boltsmana”, Matem. modelirovanie, 13:6 (2001), 87–92 | Zbl

[2] Aristov V. V., “Izuchenie ustoichivykh i neustoichivykh svobodnykh struinykh techenii na osnove uravneniya Boltsmana”, Izv. RAN. Mekhan. zhidkosti i gaza, 1998, no. 2, 153–157 | Zbl

[3] Aristov V. V., “Study of unstable numerical solutions of the Boltzmann equation and description of turbulence”, Rarefied Gas Dynamics, 2, Cepadues-Editions, Toulouse, 1999, 189–196

[4] Aristov V. V., Direct methods for solving the Boltzmann equation and study of nonequilibrium flows, Kluwer Academic Publishers, Dordrecht, 2001 | MR | Zbl

[5] Aristov V. V., Zabelok S. A., “Poluchenie reshenii dlya uravneniya Boltsmana na mnogoprotsessornykh kompyuterakh”, Matem. modelirovanie, 14:8 (2002), 5–9 | Zbl

[6] Aristov V. V., Cheremisin F. G., “Konservativnyi metod rasschepleniya dlya resheniya uravneniya Boltsmana”, Zh. vychisl. matem. i matem. fiz., 1980, no. 1, 191–207 | MR | Zbl

[7] Aristov V. V., Zabelok S. A., “Deterministicheskii metod resheniya uravneniya Boltsmana s parallelnymi vychisleniyami”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 425–437 | MR | Zbl

[8] Tcheremissine F. G., “Conservative evaluation of Boltzmann collisional integral in discrete ordinates approximation”, Computers. Math. Applic, 35:1/2 (1998), 215–221 | DOI | MR | Zbl

[9] Frolova A. A., “Raschet obtekaniya tsilindricheskikh tel pri malykh chislakh Knudsena”, Vychislitelnaya dinamika razrezhennogo gaza, VTs RAN, M., 2000, 27–36

[10] Teshima K., Nakatsuji H., “Structures of free jets from slit orifices”, Rarefied Gas Dynamics, B. G. Teubner, Stuttgart, 1986, 595–604

[11] Arnette S. A., Samimy M., Elliot G. S., “On streamwise vortices in high Reynolds number supersonic axisymmetricjets”, Phys. Fluids A, 5 (1992), 187–202 | DOI

[12] Novopashin S. A., Perepelkin A. L., “Turbulence in rarefied gas”, Rarefied Gas Dynamics, ed. Beylich A., VCH, Weinheim, 1991, 191–197