Algorithms of optimal splitting in computational fluids dynamics
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 23-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

For numerical solution of aerodynamics problems the effective algorithms are presented. The schemes are based of splitting method and require the minimum number of arithmetic operations per grid point.
@article{MM_2004_16_6_a4,
     author = {V. M. Kovenya},
     title = {Algorithms of optimal splitting in computational fluids dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--27},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a4/}
}
TY  - JOUR
AU  - V. M. Kovenya
TI  - Algorithms of optimal splitting in computational fluids dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 23
EP  - 27
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a4/
LA  - ru
ID  - MM_2004_16_6_a4
ER  - 
%0 Journal Article
%A V. M. Kovenya
%T Algorithms of optimal splitting in computational fluids dynamics
%J Matematičeskoe modelirovanie
%D 2004
%P 23-27
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a4/
%G ru
%F MM_2004_16_6_a4
V. M. Kovenya. Algorithms of optimal splitting in computational fluids dynamics. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 23-27. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a4/

[1] Kovenya V. M., Yanenko N. N., Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981, 304 pp. | MR | Zbl

[2] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, t. 1, 2, Mir, M., 1991

[3] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984, 502 pp. | MR

[4] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 614 pp. | MR

[5] Kovenya V. M., “Splitting algorithms in the finite-volume methods”, Russ. J. Numer. Anal. Math. Modelling, 17 (2002), 158–182 | MR