Numerical solution of the diffusion problem in a binary mixture of rarefied gases on the basis of the Boltzmann equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 78-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_2004_16_6_a17,
     author = {A. A. Raines},
     title = {Numerical solution of the diffusion problem in a binary mixture of rarefied gases on the basis of the {Boltzmann} equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {78--80},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a17/}
}
TY  - JOUR
AU  - A. A. Raines
TI  - Numerical solution of the diffusion problem in a binary mixture of rarefied gases on the basis of the Boltzmann equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 78
EP  - 80
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a17/
LA  - ru
ID  - MM_2004_16_6_a17
ER  - 
%0 Journal Article
%A A. A. Raines
%T Numerical solution of the diffusion problem in a binary mixture of rarefied gases on the basis of the Boltzmann equation
%J Matematičeskoe modelirovanie
%D 2004
%P 78-80
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a17/
%G ru
%F MM_2004_16_6_a17
A. A. Raines. Numerical solution of the diffusion problem in a binary mixture of rarefied gases on the basis of the Boltzmann equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 78-80. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a17/

[1] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 53–56 | MR

[2] Raines A. A., “Metod resheniya uravneniya Boltsmana dlya smesi gazov v sluchae tsilindricheskoi simmetrii v prostranstve skorostei”, Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002), 1258–1269 | MR | Zbl

[3] Raines A. A., “Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation”, European J. Mech. B. Fluids, 21:5 (2002), 599–610 | DOI | MR | Zbl

[4] Kosuge S., Aoki K., Takata S., “Shock wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules”, European. J. Mech. B. Fluids, 20:1 (2001), 87–96 | DOI | MR

[5] Harnett L., Muntz E. P., “Experimental investigation of normal shock wave velocity distribution functions in mixtures of argon and helium”, Phys. Fluids, 15:4 (1972), 565–572 | DOI

[6] Raines A. A., “Chislennoe issledovanie temperaturnykh makroparametrov v udarnoi volne v binarnoi smesi gazov na baze kineticheskogo uravneniya Boltsmana”, Izv. RAN. Mekhanika Zhidkosti i Gaza, 2003, no. 1, 154–165 | MR | Zbl

[7] Aristov V. V., Cheremisin F. G., “Konservativnyi metod rasschepleniya dlya resheniya uravneniya Boltsmana II”, Zh. Vychisl. Matem. Matem. Fiz, 20:1 (1980), 191–207 | MR | Zbl

[8] Boris J. P., Book D. L., “Flux-corrected transport. I. Shasta, a fluid transport algorithm that works”, J. Comp. Phys., 11:1 (1973), 38–69 | DOI | Zbl

[9] Korobov K. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989, 240 pp. | MR | Zbl