Numerical solution method of axially simmetric problems for the Boltzmann equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 65-68
Cet article a éte moissonné depuis la source Math-Net.Ru
Numerical splitting method of the second order of accuracy is proposed for solving the Boltzmann equation. The method is developed for investigation of rarefied gas flows at low Knudsen numbers. Linearization of collision integral near local Maxwell distribution function is used. Example of calculation of twodimensional gas flow is presented with the use of cylindrical coordinates.
@article{MM_2004_16_6_a14,
author = {I. N. Larina and V. A. Rykov},
title = {Numerical solution method of axially simmetric problems for the {Boltzmann} equation},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {65--68},
year = {2004},
volume = {16},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a14/}
}
I. N. Larina; V. A. Rykov. Numerical solution method of axially simmetric problems for the Boltzmann equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 65-68. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a14/
[1] I. N. Larina, V. A. Rykov, “Chislennyi metod vtorogo poryadka tochnosti dlya resheniya uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 42:4 (2002), 559–568 | MR | Zbl
[2] M. N. Kogan, B. C. Galkin, O. T. Fridlender, “O napryazheniyakh, voznikayuschikh v gazakh vsledstvie neodnorodnosti temperatury i kontsentratsii. Novye tipy svobodnoi konvektsii”, Uspekhi fiz. nauk, 119:1 (1976), 111–124