Modeling of curves with parametric polynomials by the method of least squares
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 48-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the approximation of discrete functions with parametric polynomials by method of least squares (MLS). The problem of the choice of the best parameter is studied. The problem of the determination of coefficients of approximation polynomials is solved by the traditional method – solving the normal system of MLS, and by method of orthogonal polynomials. The presented algorithms can be applied to both space and plane curves.
@article{MM_2004_16_6_a10,
     author = {E. B. Kuznetsov and A. Yu. Yakimovitch},
     title = {Modeling of curves with parametric polynomials by the method of least squares},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {48--51},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a10/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - A. Yu. Yakimovitch
TI  - Modeling of curves with parametric polynomials by the method of least squares
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 48
EP  - 51
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a10/
LA  - ru
ID  - MM_2004_16_6_a10
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A A. Yu. Yakimovitch
%T Modeling of curves with parametric polynomials by the method of least squares
%J Matematičeskoe modelirovanie
%D 2004
%P 48-51
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a10/
%G ru
%F MM_2004_16_6_a10
E. B. Kuznetsov; A. Yu. Yakimovitch. Modeling of curves with parametric polynomials by the method of least squares. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 48-51. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a10/

[1] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[2] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] Kuznetsov E. B., Shalashilin V. I., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editoreal URSS, M., 1999 | MR

[4] Foks A., Pratt M., Vychislitelnaya geometriya, Mir, M., 1982 | MR

[5] Khemming R. V., Chislennye metody, Nauka, M., 1972 | MR

[6] Seber Dzh., Lineinyi regressionnyi analiz, Mir, M., 1980 | Zbl

[7] Nosach V. V., Reshenie zadach approksimatsii s pomoschyu personalnykh kompyuterov, MIKAP, M., 1994

[8] Verzhbitskii V. M., Osnovy chislennykh metodov, Vyssh. shk., M., 2002