Stabilizing of a nonconservative system by introduction of high frequency harmonic force
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stabilizing (increasing of the buckling load) of a cantilevered beam under partial follower force by additional introduction of high frequency harmonic force is considered. The stabilizing influence of this force on the behavior of a non-conservative system in divergence and flutter regions of instability is studied with two versions of additional harmonic force: “dead” and purely follower. Numerical results indicate on the high efficacy of the considered method for increasing of stability of elastic systems.
@article{MM_2004_16_6_a1,
     author = {V. A. Postnov and G. A. Tumashik},
     title = {Stabilizing of a nonconservative system by introduction of high frequency harmonic force},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {7--12},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a1/}
}
TY  - JOUR
AU  - V. A. Postnov
AU  - G. A. Tumashik
TI  - Stabilizing of a nonconservative system by introduction of high frequency harmonic force
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 7
EP  - 12
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a1/
LA  - ru
ID  - MM_2004_16_6_a1
ER  - 
%0 Journal Article
%A V. A. Postnov
%A G. A. Tumashik
%T Stabilizing of a nonconservative system by introduction of high frequency harmonic force
%J Matematičeskoe modelirovanie
%D 2004
%P 7-12
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a1/
%G ru
%F MM_2004_16_6_a1
V. A. Postnov; G. A. Tumashik. Stabilizing of a nonconservative system by introduction of high frequency harmonic force. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 7-12. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a1/

[1] Chelomei V. N., “O vozmozhnosti povysheniya ustoichivosti uprugikh sistem pri pomoschi vibratsii”, DAN SSSR, 110:3 (1956)

[2] Blekhman I. I., Malakhova O. Z., “O kvaziravnovesnykh polozheniyakh mayatnika Chelomeya”, DAN SSSR, 287:2 (1988)

[3] Chelomei S. V., “Dinamicheskaya ustoichivost pri vysokochastotnom vozbuzhdenii”, DAN SSSR, 257:4 (1981) | MR

[4] Agafonov S. A., “Effekt stabilizatsii ravnovesiya mayatnika Tsiglera parametricheskim vozbuzhdeniem”, Izv. AN MTT, 1997, no. 6, 36–40

[5] Agafonov S. V., “Stabilizatsiya dvizheniya nekonservativnykh sistem s pomoschyu parametricheskogo vozbuzhdeniya”, Izv. AN. MTT, 1998, no. 2, 199–202

[6] Postnoe V. A., Tumashik G. A., “Stabilizatsiya nekonservativnoi sistemy putem vvedeniya vysokochastotnoi garmonicheskoi sily”, Vestnik NNGU. Seriya Mekhanika, 5 (2003), 12–17

[7] Blekhman I. I., Vibratsionnaya mekhanika, Nauka, M., 1994, 398 pp. | MR | Zbl