Mathematical modelling of wave motion along the edge of elastic wedge
Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physico-mathematical model is proposed of acoustic wave propagation along the edge of wedge. Spatial model of acoustic field well goes with known measurings.
@article{MM_2004_16_5_a2,
     author = {Kh. B. Tolipov},
     title = {Mathematical modelling of wave motion along the edge of elastic wedge},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--39},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a2/}
}
TY  - JOUR
AU  - Kh. B. Tolipov
TI  - Mathematical modelling of wave motion along the edge of elastic wedge
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 35
EP  - 39
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a2/
LA  - ru
ID  - MM_2004_16_5_a2
ER  - 
%0 Journal Article
%A Kh. B. Tolipov
%T Mathematical modelling of wave motion along the edge of elastic wedge
%J Matematičeskoe modelirovanie
%D 2004
%P 35-39
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a2/
%G ru
%F MM_2004_16_5_a2
Kh. B. Tolipov. Mathematical modelling of wave motion along the edge of elastic wedge. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 35-39. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a2/

[1] Poverkhnostnye akusticheskie volny, ed. A. Olinera, Mir, M., 1981, 255 pp.

[2] Tolipov Kh. B., “Dinamicheskaya zadacha teorii uprugosti dlya uglovykh oblastei s odnorodnymi granichnymi usloviyami”, PMM, 55:5 (1993), 120–126 | MR

[3] Moss S. L., Maradudin A. A., Cunningham S. L., Phys. Rev. B, 8 (1973), 2999 | DOI