Numerical solution for hyperbolic PDE in unlimited domain
Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 114-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Difference schemes for the hyperbolic PDE are constructed on quasi-equidistant grids covering unlimited spatial domain. The offered schemes are the natural generalization of the well known ones on uniform grids. Approximation, stability and convergence of the constructed methods are investigated. The cases both one and multi-spatial dimensions are considered.
@article{MM_2004_16_4_a12,
     author = {A. B. Alshin and E. A. Alshina and N. N. Kalitkin},
     title = {Numerical solution for hyperbolic {PDE} in unlimited domain},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {114--126},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a12/}
}
TY  - JOUR
AU  - A. B. Alshin
AU  - E. A. Alshina
AU  - N. N. Kalitkin
TI  - Numerical solution for hyperbolic PDE in unlimited domain
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 114
EP  - 126
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a12/
LA  - ru
ID  - MM_2004_16_4_a12
ER  - 
%0 Journal Article
%A A. B. Alshin
%A E. A. Alshina
%A N. N. Kalitkin
%T Numerical solution for hyperbolic PDE in unlimited domain
%J Matematičeskoe modelirovanie
%D 2004
%P 114-126
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a12/
%G ru
%F MM_2004_16_4_a12
A. B. Alshin; E. A. Alshina; N. N. Kalitkin. Numerical solution for hyperbolic PDE in unlimited domain. Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 114-126. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a12/

[1] Kalitkin N. N., Kuznetsov I. O., Panchenko S. L., “Metod kvaziravnomernykh setok v beskonechnoi oblasti”, DAN, 374:5 (2000), 598–601 | MR | Zbl

[2] Alshina E. A., Kalitkin N. N., “Vychislenie spektrov lineinykh differentsialnykh operatorov”, DAN, 380:4 (2001), 443–447 | MR

[3] Alshina E. A., Kalitkin N. N., Panchenko S. L., “Chislennoe reshenie kraevykh zadach v neogranichennykh oblastyakh”, Matematicheskoe modelirovanie, 14:11 (2002), 10–22 | MR

[4] Alshin A. B., Alshina E. A., “Chislennoe reshenie nachalno-kraevykh zadach dlya uravnenii sostavnogo tipa v neogranichennykh oblastyakh”, ZhVM i MF, 42:12 (2002), 1796–1803 | MR

[5] Kalitkin N. N., Chislennye metody, Nauka, Moskva, 1978 | MR

[6] Alshin A. B., Alshina E. A., Boltnev A. A., Kacher O. A., Koryakin P. V., “Chislennoe reshenie nachalno-kraevykh zadach dlya uravnenii Sobolevskogo tipa metodom kvaziravnomernykh setok”, ZhVM i MF, 44:3 (2004), 493–513 | MR

[7] Butuzov V. F., Krutitskaya N. Ch., Shishkin A. A., Lineinaya algebra v voprosakh i zadachakh, Fizmatlit, M., 2001 | Zbl

[8] Godunov S. K., Lektsii po sovremennym aspektam lineinoi algebry, Nauchnaya kniga, Novosibirsk, 2002

[9] Rosenbrock H. H., “Some general implicit processes for the numerical solution of differential equations”, Comput. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[10] Budak B. M., Samarskii A. A., Tikhonov A. N., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1980 | MR | Zbl