Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_3_a4, author = {M. E. Stepantsov}, title = {Mathematical model for the directed motion of a people group}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {43--49}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/} }
M. E. Stepantsov. Mathematical model for the directed motion of a people group. Matematičeskoe modelirovanie, Tome 16 (2004) no. 3, pp. 43-49. http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/
[1] Toffoli T., Cellular Automata Mechanic, Tech. Rep. 208 Comp. Comm. Sci. Dept., The Univ. of Michigan, 1977
[2] Margolus N., “Physics-like models of computation”, Physica IOD, 1984, 81–95 | MR | Zbl
[3] Toffoli T., Margolus N., Mashiny kletochnykh avtomatov, Mir, M., 1991
[4] Frisch U., Hasslacher B., Pomeau Y., “Lattice-gas Automata for Navier–Stokes equation”, Phys. Rev. Letters, 56 (1986), 1505–1508 | DOI
[5] Mayainetskii G. G., Stepantsov M. E., “Modelirovanie protsessov kondensatsii i neizotermicheskikh techenii gaza s pomoschyu kletochnykh avtomatov”, Zhurnal fizicheskoi khimii, 69:8 (1995), 1528–1532
[6] Mayainetskii G. G., Shakaeva M. L., “K issledovaniyu kletochnogo avtomata, modeliruyuschego kolebatelnye khimicheskie reaktsii”, Dokl. AN SSSR, 321:4 (1991), 711
[7] Mayainetskii G. G., Stepantsov M. E., “Modelirovanie diffuzionnykh protsessov s pomoschyu kletochnykh avtomatov s okrestnostyu Margolusa”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:6 (1998), 1017–1020 | MR
[8] Stepantsov M. E., “Modelirovanie dinamiki dvizheniya gruppy lyudei na osnove reshetochnogo gaza s nelokalnymi vzaimodeistviyami”, Izvestiya Vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 7:5 (1999), 44–46
[9] J. Hardy, Y. Pomeau and O. de Pazzis, “Time Evolution of a Two-Dimensional Model System”, J. Math. Phys., 19:3 (1978), 293–297