Mathematical model for the directed motion of a people group
Matematičeskoe modelirovanie, Tome 16 (2004) no. 3, pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of discrete models application is considered, one example of the application is studying the directed motion of a people group. A discrete model of this motion based on a cellular automaton is proposed. Some examples of the test problems solving are given.
@article{MM_2004_16_3_a4,
     author = {M. E. Stepantsov},
     title = {Mathematical model for the directed motion of a people group},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/}
}
TY  - JOUR
AU  - M. E. Stepantsov
TI  - Mathematical model for the directed motion of a people group
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 43
EP  - 49
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/
LA  - ru
ID  - MM_2004_16_3_a4
ER  - 
%0 Journal Article
%A M. E. Stepantsov
%T Mathematical model for the directed motion of a people group
%J Matematičeskoe modelirovanie
%D 2004
%P 43-49
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/
%G ru
%F MM_2004_16_3_a4
M. E. Stepantsov. Mathematical model for the directed motion of a people group. Matematičeskoe modelirovanie, Tome 16 (2004) no. 3, pp. 43-49. http://geodesic.mathdoc.fr/item/MM_2004_16_3_a4/

[1] Toffoli T., Cellular Automata Mechanic, Tech. Rep. 208 Comp. Comm. Sci. Dept., The Univ. of Michigan, 1977

[2] Margolus N., “Physics-like models of computation”, Physica IOD, 1984, 81–95 | MR | Zbl

[3] Toffoli T., Margolus N., Mashiny kletochnykh avtomatov, Mir, M., 1991

[4] Frisch U., Hasslacher B., Pomeau Y., “Lattice-gas Automata for Navier–Stokes equation”, Phys. Rev. Letters, 56 (1986), 1505–1508 | DOI

[5] Mayainetskii G. G., Stepantsov M. E., “Modelirovanie protsessov kondensatsii i neizotermicheskikh techenii gaza s pomoschyu kletochnykh avtomatov”, Zhurnal fizicheskoi khimii, 69:8 (1995), 1528–1532

[6] Mayainetskii G. G., Shakaeva M. L., “K issledovaniyu kletochnogo avtomata, modeliruyuschego kolebatelnye khimicheskie reaktsii”, Dokl. AN SSSR, 321:4 (1991), 711

[7] Mayainetskii G. G., Stepantsov M. E., “Modelirovanie diffuzionnykh protsessov s pomoschyu kletochnykh avtomatov s okrestnostyu Margolusa”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:6 (1998), 1017–1020 | MR

[8] Stepantsov M. E., “Modelirovanie dinamiki dvizheniya gruppy lyudei na osnove reshetochnogo gaza s nelokalnymi vzaimodeistviyami”, Izvestiya Vysshikh uchebnykh zavedenii. Prikladnaya nelineinaya dinamika, 7:5 (1999), 44–46

[9] J. Hardy, Y. Pomeau and O. de Pazzis, “Time Evolution of a Two-Dimensional Model System”, J. Math. Phys., 19:3 (1978), 293–297