Ultra small angle tomography methods in plasma diagnostics
Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 111-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some results on investigation of five methods: G (Greville), H (Huang), SVD (singular value decomposition) CG (synthesis of Cormack method and G-method) and DG (synthesis of Danzig simplexmethod and G-method) for solution of computer tomography inverse problem (in geometry of tokamaks T-10 and ASDEX) applying to the high temperature plasma diagnostics (soft X-ray, bolometry, neutron tomography and so on) are presented. Some recommendations for solving the problem of plasma evolution in half-automatical regime (between shots) are given.
@article{MM_2004_16_2_a9,
     author = {A. V. Khovanskii and N. M. Vakhanelova and A. M. Demkin and L. N. Starodubtseva and M. A. Charikov and A. V. Shulzhenko},
     title = {Ultra small angle tomography methods in plasma diagnostics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--117},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a9/}
}
TY  - JOUR
AU  - A. V. Khovanskii
AU  - N. M. Vakhanelova
AU  - A. M. Demkin
AU  - L. N. Starodubtseva
AU  - M. A. Charikov
AU  - A. V. Shulzhenko
TI  - Ultra small angle tomography methods in plasma diagnostics
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 111
EP  - 117
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_2_a9/
LA  - ru
ID  - MM_2004_16_2_a9
ER  - 
%0 Journal Article
%A A. V. Khovanskii
%A N. M. Vakhanelova
%A A. M. Demkin
%A L. N. Starodubtseva
%A M. A. Charikov
%A A. V. Shulzhenko
%T Ultra small angle tomography methods in plasma diagnostics
%J Matematičeskoe modelirovanie
%D 2004
%P 111-117
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_2_a9/
%G ru
%F MM_2004_16_2_a9
A. V. Khovanskii; N. M. Vakhanelova; A. M. Demkin; L. N. Starodubtseva; M. A. Charikov; A. V. Shulzhenko. Ultra small angle tomography methods in plasma diagnostics. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 111-117. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a9/

[1] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[2] V. V. Pikapov, T. S. Melnikova, Nizkotemperaturnaya plazma. Tomografiya plazmy, Nauka, Novosibirsk, 1995

[3] V. Yu. Terebizh, “Vosstanovlenie izobrazhenii pri minimalnoi apriornoi informatsii”, UFN, 165:2 (1995), 143–176 | DOI

[4] E. A. Azizov i dr., Vosstanovlenie poloidalnykh magnitnykh polei na tokamakakh, VII Zvenigorodskaya konferentsiya po fizike plazmy i UTS (stend, doklad), 1995 | Zbl

[5] M. Anton, H. Weisen, M. J. Dutch, F. Buhlmann, R. Chavan, B. Marletaz, P. Marmillod, P. J. Paris, X-Ray Tomography on TCV, Ecole Polytechnique Federal de Losanne, Suisse, 1996

[6] M. Bessenrodt-Weberpals, J. C. Fuchs, M. Sokoll and the Asdex Upgrade Team, Soft X-Ray Diagnostics for Asdex Upgrade, Max-Planck-Insitut für Plasmaphysik, Garching bei Munchen, 1995

[7] G. A. Bobrovsky, Yu. N. Dnestrovskiy, D. A. Kislov, et al., “Different mechanisms of the sawtooth crach in the T-10 plasma”, Nucl. Fusion, 3:8 (1990), 1463–1473

[8] M. H. Buonocore, W. R. Brody, A. Macovski, “A natural pixel decomposition for two-dimensional image reconstruction”, IEEE, Trans. Biomed. Eng., BME-28 (1981), 69–78 | DOI

[9] J. F. Camacho, R. S. Granetz, “Soft X-ray tomography diagnostics for the Alcator C tokamak”, Rev. Sci. Instrum., 57:3 (1986), 417–425 | DOI

[10] A. M. Cormack, “Representation of a Function by Its Line Integrals, with Some Radiological Applications”, Journal of Applied Physics (I), 34:9 (1963) ; 35:10 (1964) | Zbl | Zbl

[11] G. T. Gilberg, G. L. Zeng, “A Reconstruction Algorithm Using Singular Value Decomposition of a Discrete Representation of the Exponential Radon Transform Using Natural Pixels”, IEEE Transactions on Nuclear Science, 41:6 (1994), 2812–2819 | DOI

[12] Yu. N. Dnestrovskii, E. S. Lyadina, P. V. Savrukhin, Prostranstvenno-vremennaya tomograficheskaya zadacha diagnostiki plazmy, preprint IAE-5201/15, M., 1990, 47 pp.

[13] R. S. Granetz, P. Smeulders, “X-Ray tomography on Jet”, Nuclear Fusion, 28:3 (1988)

[14] P. S.Hansen, “The truncated SVD as a method for regularization”, Bit, 27 (1987), 534–553 | DOI | MR | Zbl

[15] F. Holland, G. A. NavratiL, “Tomographic analysis of the evolution of plasma cross-sections”, Rev. Sci. Instrum., 57:8 (1986), 1557–1566 | DOI

[16] C. Janicki, R. Decoste, P. Noel, “Soft X-ray imaging diagnostics on the TdeV tokamak”, Rev. Sci. Instrum., 63:10 (1992), 4410–4417 | DOI

[17] A. E. Korobochkin, N. A. Marchenko, A. Kh. Pergament, “Postanovka zadach rekonstruktivnoi tomografii v fizike plazmy”, Diagnostika plazmy, 7, Energoatomizdat, M., 1990, 154–163

[18] P. Maass, “Singular value decomposition for Radon transform”, Mathematical Methods in Tomography, Lect. Not. Math., 1497, Springer-Verlag, Berlin, 1991, 6–14 | MR

[19] Y. Nagayama, “Tomography of $m=1$ mode structure in tokamak plasma using least-square fitting method and Fourier-Bessel expansions”, J. Appl. Phys., 62:7 (1987), 2702–2706 | DOI

[20] Y. Nagayama, R. Buchse, A. Cavallo A. et al., “Image reconstruction of ECE and X-ray signals for high $\beta$-plasmas on TFTR”, Rev. Sci. Instrum., 61:10 (1990), 3265–3267 | DOI

[21] Y. Nagayama, A. W. Edwards, “Rotational soft X-ray tomography on noncircular tokamak plasmas”, Rev. Sci. Instrum., 63:10 (1992), 4757–4759 | DOI

[22] Y. Nagayama, S. Tsuji, K. Kawahata, “Soft X-ray tomography of sawtooth oscillations in the JIPP T-II tokamak”, Phys. Rev. Lett., 61:16 (1988), 1839–1842 | DOI

[23] C. Nardone, Multichannel Fluctuation Data Analysis by Singular Value Decomposition Method. Application to MHD Modes in JET, JET Joint Undertaking, Abingdon, Oxon, OX14 3EA, 1992

[24] M. I. Pergament, “Informatsionnye aspekty opticheskikh izobrazhenii”, Diagnostika plazmy, 7, Energoatomizdat, M., 1990, 163–208

[25] A. V. Khovanskii, D. A. Skopintsev, L. N. Starodubtseva, V. F. Shevchenko, “Realizatsiya metoda Gottardi dlya resheniya zadach TSP”, 5-e Vsesoyuznoe Soveschanie po diagnostike vysokotemperaturnoi plazmy, Tezisy dokladov, Minsk, 1990

[26] A. V. Khovanskii, N. M. Vakhanelova, A. M. Dëmkin, L. N. Starodubtseva, O metodakh ultramalorakursnoi tomografii v diagnostike plazmy na tokamakakh, preprint TRINITI 0084-A, TsNIIatominform, Troitsk, 2002

[27] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, 3-izd., Nauka, M., 1986 | MR | Zbl

[28] A. V. Khovanskii, “Regulyarizovannyi metod Grevillya i ego primeneniya v transmissionnoi kompyuternoi tomografii”, Matematicheskoe Modelirovanie, 8:11 (1996), 109–118, M. | MR

[29] K. Brammer, G. Ziffling, Filtr Kalmana-Byusi, Nauka, M., 1982

[30] A. Van der Slyuis, Kh. A. Van der Vorst, “Chislennoe reshenie bolshikh razrezhennykh lineinykh algebraicheskikh sistem, voznikayuschikh v zadachakh tomografii”, G. Nolet, Seismicheskaya tomografiya, Mir, M., 1990

[31] M. Bertero, E. A. Podzho, V. Torre, “Nekorrektnye zadachi v predvaritelnoi obrabotke vizualnoi informatsii”, TIIER, 76:8 (1988), 17–40, M.

[32] N. Koblits, $P$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1982 | MR

[33] I. Abaffi, E. Spedikato, Matematicheskie metody dlya lineinykh i nelineinykh uravnenii. Proektsionnye ABS-algoritmy, Mir, M., 1996 | MR

[34] S. L. Marplml, Tsifrovoi spektralnyi analiz i ego prilozheniya, Mir, M., 1990

[35] A. V. Khovanskii, N. M. Vakhanelova, A. M. Dëmkin, Reshenie sistem lineinykh algebraicheskikh uravnenii s garantiei neotritsatelnosti resheniya na osnove simpleks-metoda Dantsiga, preprint TRINITI 0072-A, Tsniiatominform, Troitsk, 2000, 6 pp.

[36] Dzh. Dantsig, Lineinoe programmirovanie, ego primeneniya i obobscheniya, Progress, M., 1966

[37] A. V. Khovanskii, N. M. Vakhanelova, A. V. Shulzhenko, Metod resheniya obratnoi dvumernoi zadachi Radona, osnovannyi na sinteze metodov Grevillya i Kormaka, Tsniiatominform, Troitsk, 2003, 4 pp.

[38] O. V. Bartenev, Sovremennyi Fortran, DIALOGMIFI, M., 1998; Visual Fortran: новые возможности, ДИАЛОГМИФИ, М., 1999; Фортран для профессионалов, Математическая библиотека IMSL, ДИАЛОГМИФИ, М., 2000

[39] A. V. Khovanskii, A. M. Dëmkin, “Novye metody blochno-tsiklicheskogo obrascheniya v kompyuternoi tomografii”, Matematicheskoe Modelirovanie, 13:1 (2001), 51–64 | MR

[40] Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999

[41] K. Chui, Vvedenie v veivlety, Mir, M., 2001

[42] U. Prett, Tsifrovaya obrabotka izobrazhenii, t. 1, t. 2, Mir, M., 1982

[43] P. M. Batyrov, Metody tomograficheskoi diagnostiki lazernoi plazmy s primeneniem preobrazovaniya Khartli, Avtoreferat dissertatsii na soiskanie uchënoi stepeni k.f.-m.n., Makhachkala, 2000

[44] R. Breisuell, Preobrazovanie Khartli. Teoriya i prilozheniya, Mir, M., 1990 | MR