Activity of social insurance foundation at relay-hysteresis control of the capital
Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 43-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model is proposed for social insurance foundation at relay-hysteresis control of capital of such a foundation. The case is considered when payments for insured accidents form a Poisson flow of events and are uniformly distributed independent random variables with exponential distribution function. The stationary capital distribution density is determined in the frameworks of the assumptions. The procedure is proposed for determination of the control parameters providing for the prescribed probability characteristics of operation of the foundation.
@article{MM_2004_16_2_a3,
     author = {O. A. Zmeyev},
     title = {Activity of social insurance foundation at relay-hysteresis control of the capital},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a3/}
}
TY  - JOUR
AU  - O. A. Zmeyev
TI  - Activity of social insurance foundation at relay-hysteresis control of the capital
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 43
EP  - 53
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_2_a3/
LA  - ru
ID  - MM_2004_16_2_a3
ER  - 
%0 Journal Article
%A O. A. Zmeyev
%T Activity of social insurance foundation at relay-hysteresis control of the capital
%J Matematičeskoe modelirovanie
%D 2004
%P 43-53
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_2_a3/
%G ru
%F MM_2004_16_2_a3
O. A. Zmeyev. Activity of social insurance foundation at relay-hysteresis control of the capital. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 43-53. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a3/

[1] Panjer H. H., Willmot G. E., Insurance Risk Models, Society of Actuaries, 1992, 442 pp. | MR

[2] Takach L., Kombinatornye metody v teorii sluchainykh protsessov, Izd-vo “Mir”, M., 1971, 263 pp. | MR

[3] Adashkin L. F., Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii “Informatsionnye tekhnologii i matematicheskoe modelirovanie” (Anzhero-Sudzhensk, 15 noyabrya 2002 g.), Izd-vo “Tverdynya”, Tomsk, 2002, 14–18

[4] Zmeev O. A., “Matematicheskie model fonda sotsialnogo strakhovaniya s determinirovannymi raskhodami na sotsialnye programmy (diffuzionnoe priblizhenie)”, Izv. vuzov Fizika, 2003, no. 3, 83–87

[5] Zmeev O. A., “Matematicheskie model fonda sotsialnogo strakhovaniya so sluchainymi raskhodami na sotsialnye programmy (diffuzionnoe priblizhenie)”, Izv. vuzov Fizika, 2003, no. 3, 88–93

[6] Radyuk L. E., Terpugov A. F., Teoriya veroyatnostei i sluchainykh protsessov, Izd-vo Tomsk. unta, Tomsk, 1988, 174 pp. | Zbl