Parallel methods for tree traverse
Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two parallel methods for making tree traverse on a cluster computing system are proposed. Experimental results concerning the methods are given for $k$-order trees, for combination trees, and for optimal appointment trees.
@article{MM_2004_16_1_a8,
     author = {N. E. Timoshevskaya},
     title = {Parallel methods for tree traverse},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_1_a8/}
}
TY  - JOUR
AU  - N. E. Timoshevskaya
TI  - Parallel methods for tree traverse
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 105
EP  - 114
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_1_a8/
LA  - ru
ID  - MM_2004_16_1_a8
ER  - 
%0 Journal Article
%A N. E. Timoshevskaya
%T Parallel methods for tree traverse
%J Matematičeskoe modelirovanie
%D 2004
%P 105-114
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_1_a8/
%G ru
%F MM_2004_16_1_a8
N. E. Timoshevskaya. Parallel methods for tree traverse. Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/MM_2004_16_1_a8/

[1] Agibadov G. P., Belyaev V. A., Tekhnologiya resheniya kombinatorno-logicheskikh zadach metodom sokraschennogo obkhoda dereva poiska, Izd-vo Tomskogo un-ta, Tomsk, 1981, 125 pp.

[2] Knut D., Iskusstvo programmirovaniya dlya EVM, t. 1, Mir, M., 1976, 734 pp.

[3] Voevodin V. V., Voevodin Vl. V., Parallelnye vychisleniya, BKhV-Peterburg, SPb., 2002, 608 pp.

[4] T. Kormen, Ch. Leizerson, R. Rivest, Algoritmy: postroenie i analiz, MTsNMO, M., 2001, 955 pp.