Nonlinear method for solving the stationary quasi-diffusion difference equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two dimensional difference task is reduced to sequence of one dimensional ones by new manner. Nonlinear transformations of difference equations accelerates the iterations convergence. The choice of optimal iterational parameter provides linear dependence of the number of iterations on grid dimension. The self-adjointness of operator and information of its spectrum are not necessary. This method runs with strong heterogeneity and cavities.
@article{MM_2004_16_1_a7,
     author = {V. Ya. Gol'din and S. V. Shilkova},
     title = {Nonlinear method for solving the stationary quasi-diffusion difference equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_1_a7/}
}
TY  - JOUR
AU  - V. Ya. Gol'din
AU  - S. V. Shilkova
TI  - Nonlinear method for solving the stationary quasi-diffusion difference equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 97
EP  - 104
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_1_a7/
LA  - ru
ID  - MM_2004_16_1_a7
ER  - 
%0 Journal Article
%A V. Ya. Gol'din
%A S. V. Shilkova
%T Nonlinear method for solving the stationary quasi-diffusion difference equation
%J Matematičeskoe modelirovanie
%D 2004
%P 97-104
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_1_a7/
%G ru
%F MM_2004_16_1_a7
V. Ya. Gol'din; S. V. Shilkova. Nonlinear method for solving the stationary quasi-diffusion difference equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/MM_2004_16_1_a7/

[1] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] B. N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchayuschego gaza, Nauka, M., 1978

[3] V. Ya. Goldin, A. V. Kolpakov, “Kombinirovannye metody resheniya mnogomernoi statsionarnoi sistemy uravnenii kvazidiffuzii”, sb. Vychislitelnye metody lineinoi algebry, Trudy Vses. konf., Otdel Vychislitelnoi Matematiki AN SSSR, M., 1983, 60–71 | MR

[4] E. N. Aristova, A. V. Kolpakov, “Kombinirovannaya raznostnaya skhema dlya approksimatsii ellipticheskogo operatora na kosougolnoi yacheike”, MM, 3:4 (1991), 93–102 | MR

[5] E. N. Aristova, V. Ya. Goldin, “Nelineinoe uskorenie iteratsii resheniya ellipticheskikh sistem uravnenii”, Matematicheskoe modelirovanie, 13:9 (2001), 82–90 | MR | Zbl

[6] V. Ya. Goldin, O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom, Sovremennye problemy matematicheskoi fiziki i vychislitelnoi matematiki, Nauka, M., 1978

[7] O. Yu. Milyukova, B. N. Chetverushkin, “Parallelnyi variant poperemenno-treugolnogo metoda”, ZhVM i MF, 38:2 (1998), 228–238 | MR | Zbl

[8] A. D. Gadeyuiev, V. N. Pisarev, A. A. Shestakov, “Metod rascheta dvumernykh zadach teploprovodnosti na neortogonalnykh setkakh”, ZhVM i MF, 22:2 (1982), 339–347 | MR

[9] L. A. Lyusternik, “Zamechaniya k chislennomu resheniyu kraevykh zadach uravneniya Laplasa i vychisleniyu sobstvennykh znachenii metodom setok”, Trudy matematicheskogo instituta AN SSSR, 20, 1947, 49–64 | MR | Zbl