Direct generalized characteristic method for discontinuos solutions calculation of gas dynamics laws of conservation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method of construction the nonstationary shock solution is briefly described. The method provides tracking the most essential shocks of the solution and its derivatives in the calculations. A sufficient condition of stability is satisfied automatically in the method,the latter guaranteeing the numerical solution to be monotonous. The results of one-dimensional calculations are presented.
@article{MM_2004_16_1_a6,
     author = {V. G. Grudnitskii},
     title = {Direct generalized characteristic method for discontinuos solutions calculation of gas dynamics laws of conservation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {90--96},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_1_a6/}
}
TY  - JOUR
AU  - V. G. Grudnitskii
TI  - Direct generalized characteristic method for discontinuos solutions calculation of gas dynamics laws of conservation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 90
EP  - 96
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_1_a6/
LA  - ru
ID  - MM_2004_16_1_a6
ER  - 
%0 Journal Article
%A V. G. Grudnitskii
%T Direct generalized characteristic method for discontinuos solutions calculation of gas dynamics laws of conservation
%J Matematičeskoe modelirovanie
%D 2004
%P 90-96
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_1_a6/
%G ru
%F MM_2004_16_1_a6
V. G. Grudnitskii. Direct generalized characteristic method for discontinuos solutions calculation of gas dynamics laws of conservation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 90-96. http://geodesic.mathdoc.fr/item/MM_2004_16_1_a6/

[1] O. M. Belotserkovskii, V. G. Grudnitskii, V. N. Rygalin, “Vydelenie razryvov pri raschëte odnomernykh nestatsionarnykh reshenii”, Dok. Akademii nauk, 272:1 (1983), 49–53

[2] O. A. Azarova, V. V. Vlasov, V. G. Grudnitskii, V. N. Rygalin, “Raschëty odnomernykh gazodinamicheskikh techenii s vydeleniem udarnykh voln i kontaktnykh razryvov”, Sb. Algoritmy dlya chislennogo issledovaniya razryvnykh techenii, 1993, 56–80 | MR

[3] O. A. Azarova, V. V. Vlasov, V. G. Grudnitskii, N. A. Popov, V. N. Rygalin, “Raznostnaya skhema na minimalnom shablone i eë primenenie v algoritmakh vydeleniya razryvov”, Sb. Algoritmy dlya chislennogo issledovaniya razryvnykh techenii, 1993, 9–56 | MR

[4] V. G. Grudnitskii, “Obobschënnye kharakteristiki dlya sistem uravnenii Eilera i ikh primenenie k konstruirovaniyu chislennykh skhem”, Matem. Modelirovanie, 4:12 (1992), 45–48

[5] V. G. Grudnitskii, “Obobschënnye kharakteristiki i dostatochnye usloviya ustoichivosti dlya uravnenii Eilera s razryvnymi resheniyami”, Matem. Modelirovanie, 9:12 (1997), 121–125 | MR

[6] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti pri yavnom postroenii razryvnykh reshenii sistemy uravnenii Eilera”, Dok. Akademii nauk, 362:3 (1998), 298–299 | MR

[7] V. G. Grudnitskii, “Dostatochnoe uslovie ustoichivosti mnogomernogo raschëta nestatsionarnykh razryvnykh reshenii uravnenii Eilera”, Matem. Modelirovanie, 12:1 (2000), 65–77 | MR

[8] V. G. Grudnitskii, P. V. Plotnikov, “Obobschënnye kharakteristiki i dostatochnye usloviya ustoichivosti pri postroenii razryvnykh reshenii uravnenii Eilera”, Sb. Novoe v chislennom modelirovanii, 2000, 148–165 | MR

[9] V. G. Grudnitskiy, “Sufficient conditions of stability for discontinues solutions of the Euler equations”, Computational Fluid Dynamics, 10:2 (2001), 334–337