General properties of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$
Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 75-89

Voir la notice de l'article provenant de la source Math-Net.Ru

General properties (parametric scaling, mean value, variance, width, asymmetry) of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$ are investigated as a general cause of the normal and exponential ones. It is able to describe wider class of processes than just ones. Methods determination, visual interpretation and calculation its parameters are presented. One can operate with the distribution as well as with normal distribution. Formulae and example are adduced.
@article{MM_2004_16_1_a5,
     author = {A. A. Kirillov and I. A. Kirillov},
     title = {General properties of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--89},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_1_a5/}
}
TY  - JOUR
AU  - A. A. Kirillov
AU  - I. A. Kirillov
TI  - General properties of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 75
EP  - 89
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_1_a5/
LA  - ru
ID  - MM_2004_16_1_a5
ER  - 
%0 Journal Article
%A A. A. Kirillov
%A I. A. Kirillov
%T General properties of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$
%J Matematičeskoe modelirovanie
%D 2004
%P 75-89
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_1_a5/
%G ru
%F MM_2004_16_1_a5
A. A. Kirillov; I. A. Kirillov. General properties of probability density $A\cdot\exp(-(x-c)^2/(a(x-c)+2b^2))$. Matematičeskoe modelirovanie, Tome 16 (2004) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/MM_2004_16_1_a5/