Numerical solution method of control problem for microphysical processes of hail cloud
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 69-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the estimated problem for control problem for microphysical processes of hail cloud. On the basis of the theory of Markov–Chebyshev–Krein's an effective algorithm for derivatives calculation of exact estimations was offered. The calculation of this derivatives is needed for solution the estimated problem for control problem for microphysical processes of hail clouds.
@article{MM_2004_16_12_a6,
     author = {Z. S. Gaeva and A. A. Shananin},
     title = {Numerical solution method of control problem for microphysical processes of hail cloud},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--84},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a6/}
}
TY  - JOUR
AU  - Z. S. Gaeva
AU  - A. A. Shananin
TI  - Numerical solution method of control problem for microphysical processes of hail cloud
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 69
EP  - 84
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a6/
LA  - ru
ID  - MM_2004_16_12_a6
ER  - 
%0 Journal Article
%A Z. S. Gaeva
%A A. A. Shananin
%T Numerical solution method of control problem for microphysical processes of hail cloud
%J Matematičeskoe modelirovanie
%D 2004
%P 69-84
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a6/
%G ru
%F MM_2004_16_12_a6
Z. S. Gaeva; A. A. Shananin. Numerical solution method of control problem for microphysical processes of hail cloud. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 69-84. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a6/

[1] B. A. Ashabokov, Z. S. Gaeva , Kh. Kh. Kalazhokov, “Chislennaya model upravleniya formirovaniem mikrostruktury gradovykh oblakov”, Trudy 11 Vsesoyuznogo simpoz. po matemat. modelir. atmosfernoi konvektsii i iskusstvennomu vozdeistviyu na konvektivnye oblaka (G. Dolgoprudnyi, 26–29 maya 1986 g.), Gidrometeoizdat, M., 1989, 66–72

[2] B. A. Ashabokov, A. V. Shapovalov, “Chislennaya model upravleniya formirovaniem mikrostruktury gradovykh oblakov”, Izvestiya AN. Fizika atmosfery i okeana, 32:3 (1996), 364–369 | MR

[3] B. A. Ashabokov, A. A. Shapovalov, L. M. Fedchenko, “Chislennaya model upravleniya formirovaniem mikrostruktury gradovykh oblakov”, Materialy simpoziuma “Matematiches. modelir. i kompyuter. tekhnologii”, Kislovodsk, 1997

[4] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001, 111 pp.

[5] P. B. Dubovskii, Matematicheskaya teoriya kinetiki koagulyatsii i drobleniya, avtoreferat dissertatsii na soiskanie uch. step. d-ra fiziko-matematicheskikh nauk, IVM RAN, M., 2000, 36 pp. | MR

[6] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973, 551 pp. | MR

[7] 3. S. Gaeva, A. A. Shananin, “Problema Markova–Chebysheva i issledovanie galerkinskikh priblizhenii v odnoi zadache agregatsii”, Matematicheskoe modelirovanie, 7:9 (1995), 35–54 | MR | Zbl

[8] A. A. Lyubushin, F. L. Chernousko, “Metod posledovatelnykh priblizhenii dlya rascheta optimalnogo upravleniya”, Tekhnicheskaya kibernetika, 1983, no. 2, 147–159 | Zbl