Numerical calculation of strongly coupled plasma composition
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 61-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ionization balance equations are considered for multicomponent plasma of arbitrary complex structure. Partial degeneracy of electrons and ionization potential shift, caused by non-ideality of plasma (interaction of charged particles), are taken into account. Quick enough and robust algorithm for solution of these equations is developed. The example with Li on conditions that plasma density verge towards condenced matter and non-ideality parameter reaches 6-7 illustrates efficiency of the method.
@article{MM_2004_16_12_a5,
     author = {N. N. Kalitkin and A. S. Pavlov},
     title = {Numerical calculation of strongly coupled plasma composition},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--68},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a5/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - A. S. Pavlov
TI  - Numerical calculation of strongly coupled plasma composition
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 61
EP  - 68
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a5/
LA  - ru
ID  - MM_2004_16_12_a5
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A A. S. Pavlov
%T Numerical calculation of strongly coupled plasma composition
%J Matematičeskoe modelirovanie
%D 2004
%P 61-68
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a5/
%G ru
%F MM_2004_16_12_a5
N. N. Kalitkin; A. S. Pavlov. Numerical calculation of strongly coupled plasma composition. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 61-68. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a5/

[1] Zeldovich Ya. B., Raizer Yu. P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii, Nauka, M., 1966, 686 pp.

[2] Kalitkin N. N., Tsareva L. S., “Metod rascheta ionizatsii na EVM”, ZhVMMF, 11:3 (1971), 772–773

[3] Basko M. M., Uravnenie sostoyaniya metallov v priblizhenii srednego iona, Prepr. No 57, ITEF, M., 1982, 44 pp. | MR

[4] Kalitkin N. N., Ritus I. V., Mironov A. M., Ionizatsionnoe ravnovesie s uchetom vyrozhdeniya elektronov, Prepr. No 46, IPM, M., 1983, 27 pp.

[5] Timan L. B., “Vliyanie vzaimodeistviya ionov na ikh ravnovesnye kontsentratsii v sluchae mnogokratnoi termicheskoi ionizatsii gaza”, ZhETF, 27:6(12) (1954), 708–711

[6] Likalter A. A., “Vzaimodeistvie atomov s elektronami i ionami v plazme”, ZhETF, 56:1 (1969), 240–245

[7] Ebeling V., Kreft V., Kremp D., Teoriya svyazannykh sostoyanii i ionizatsionnogo ravnovesiya v plazme i tverdom tele, Mir, M., 1979, 262 pp.

[8] Volokitin B. C., Golosnoi I. O., Kalitkin N. N., “Shirokodiapazonnoe uravnenie sostoyaniya veschestva. 1. Analiz modelei neidealnosti”, Izvestiya vuzov; fizika, 1994, no. 11, 23–43; Волокитин B. C., Голосной И. О., Калиткин Н. Н., “Широкодиапазонное уравнение состояния вещества. 2. Микрополевая модель.”, Известия вузов; физика, 1995, No 4, 11–31

[9] Grim G., Ushirenie spektralnykh linii v plazme, Mir, M., 1978, 491 pp.

[10] Feinman R. P., Metropolis N., Teller E., “Equations of state elements based on the generalized Fermi–Thomas theory”, Phys. Rev., 75:10 (1949), 1561–1573 | DOI

[11] Kalitkin N. N., Ritus I. V., O popravkakh na neidealnost plazmy, Prepr. No 18, IPM, M., 1987, 22 pp.

[12] Kalitkin N. N., Ritus I. V., “Gladkaya approksimatsiya funktsii Fermi–Diraka”, ZhVMMF, 26:3 (1986), 461–465 | MR

[13] Kalitkin N. N., Kuzmina L. V., “Interpolyatsionnye formuly dlya funktsii Fermi–Diraka”, ZhVMMF, 15:3 (1975), 768–771 | MR | Zbl