Irreproducibility a secondary flow in a neighbourhood of the multiple bifurcation point
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 44-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem for the influence of measurements on the values of observed quantities in the classic approximation is formalized. The research is confined to the Navier–Stokes's system and the connected with it heat equation. Their subspace of nontrivial solutions corresponding to a bifurcation point has the symplectic group $Gr\subset Sp(2,R)$.
@article{MM_2004_16_12_a4,
     author = {V. V. Larchenko},
     title = {Irreproducibility a secondary flow in a neighbourhood of the multiple bifurcation point},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--60},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a4/}
}
TY  - JOUR
AU  - V. V. Larchenko
TI  - Irreproducibility a secondary flow in a neighbourhood of the multiple bifurcation point
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 44
EP  - 60
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a4/
LA  - ru
ID  - MM_2004_16_12_a4
ER  - 
%0 Journal Article
%A V. V. Larchenko
%T Irreproducibility a secondary flow in a neighbourhood of the multiple bifurcation point
%J Matematičeskoe modelirovanie
%D 2004
%P 44-60
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a4/
%G ru
%F MM_2004_16_12_a4
V. V. Larchenko. Irreproducibility a secondary flow in a neighbourhood of the multiple bifurcation point. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 44-60. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a4/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, 6, Nauka, M., 1988, 736 pp.

[2] G. Z. Gershuni, E. M. Zhukhovitskii, A. A. Nepomnyaschii, Ustoichivost konvektivnykh techenii, Nauka, M., 1989, 320 pp. | MR | Zbl

[3] F. L. Abuev, V. V. Larchenko, “Bifurkatsionnaya neopredelennost i ee sobstvennaya granitsa”, ZhVM i MF, 42:1 (2002), 33–46 | MR | Zbl

[4] V. V. Larchenko, “Bifurkatsionnaya neopredelennost i fluktuatsiya tochek vetvleniya v usloviyakh singulyarnogo vozmuscheniya”, ZhVM i MF, 29:10 (1989), 1538–1551 | MR | Zbl

[5] V. A. Dorodnitsyn, Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001, 240 pp. | Zbl

[6] M. M. Postnikov, Lineinaya algebra, Nauka, M., 1986, 401 pp. | MR | Zbl

[7] V. V. Larchenko, “Asimptoticheskii analiz neosesimmetrichnykh form ravnovesiya tonkoi pologoi sfericheskoi obolochki”, PMM, 44:6 (1980), 1076–1086 | Zbl

[8] V. V. Larchenko, “Bifurkatsionno nekorrektnye zadachi i determinirovannye yavleniya v usloviyakh singulyarnogo vozmuscheniya”, DAN SSSR, 307:6 (1989), 1349–1354 | MR

[9] V. V. Larchenko, “Adaptiruyuschiisya variatsionnyi metod v usloviyakh needinstvennosti resheniya i singulyarnogo vozmuscheniya”, DAN SSSR, 299:2 (1988), 318–322 | MR | Zbl

[10] A. D. Fedorovskii, Opticheskie metody v gidromekhanike, Naukova dumka, Kiev, 1984, 176 pp. | Zbl

[11] L. R. Volevich, S. G. Gindikin, Metod mnogogrannika Nyutona v teorii differentsialnykh uravnenii v chastnykh proizvodnykh, Fizmatlit, M., 2002

[12] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Fizmatlit, M., 1998, 288 pp. | MR | Zbl

[13] Dzh. Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[14] A. Sadberi, Kvantovaya mekhanika i fizika elementarnykh chastits, Mir, M., 1989, 488 pp.

[15] M. B. Menskii, Kvantovye izmereniya i dekogeneratsiya, Fizmatlit, M., 2001, 232 pp. | MR