Long waves in homogeneous fluid above deformable bottom
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 123-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to nonlinear problem about distribution of long waves above a bottom which can change, deform and move is considered.The partial case was researched. It is potential movement of layer of homogeneous non compressible fluid. This mathematical model is given in linear approximation with dispersion. During the research the dispersion correlation has been advanced which characterize the dependence of the relief of the bottom upon the rheology of the ground and hydrodynamic characteristics of the water layer.
@article{MM_2004_16_12_a10,
     author = {S. I. Peregudin},
     title = {Long waves in homogeneous fluid above deformable bottom},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {123--128},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a10/}
}
TY  - JOUR
AU  - S. I. Peregudin
TI  - Long waves in homogeneous fluid above deformable bottom
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 123
EP  - 128
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a10/
LA  - ru
ID  - MM_2004_16_12_a10
ER  - 
%0 Journal Article
%A S. I. Peregudin
%T Long waves in homogeneous fluid above deformable bottom
%J Matematičeskoe modelirovanie
%D 2004
%P 123-128
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a10/
%G ru
%F MM_2004_16_12_a10
S. I. Peregudin. Long waves in homogeneous fluid above deformable bottom. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 123-128. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a10/