Application of the nested grids for modeling of a filtration process
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

Work is devoted to the further research of opportunities of numerical modeling of a filtration process with the help of the model based on attraction of additional regularizational members. Occurrence of these members in the equation of continuity is connected with absence of necessity of the integral description of a filtration process on distances smaller characteristic scale (about 100 grains of breed). Application of model is considered for calculation of a problem in space two-dimensional statement. The special attention is given an opportunity of application of the nested grids for modeling of a filtration process.
@article{MM_2004_16_12_a0,
     author = {M. S. Belotserkovska and A. M. Oparin and B. N. Chetverushkin},
     title = {Application of the nested grids for modeling of a filtration process},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a0/}
}
TY  - JOUR
AU  - M. S. Belotserkovska
AU  - A. M. Oparin
AU  - B. N. Chetverushkin
TI  - Application of the nested grids for modeling of a filtration process
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 3
EP  - 10
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a0/
LA  - ru
ID  - MM_2004_16_12_a0
ER  - 
%0 Journal Article
%A M. S. Belotserkovska
%A A. M. Oparin
%A B. N. Chetverushkin
%T Application of the nested grids for modeling of a filtration process
%J Matematičeskoe modelirovanie
%D 2004
%P 3-10
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a0/
%G ru
%F MM_2004_16_12_a0
M. S. Belotserkovska; A. M. Oparin; B. N. Chetverushkin. Application of the nested grids for modeling of a filtration process. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 3-10. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a0/

[1] Kompyuternye modeli i progress v meditsine, eds. O. M. Belotserkovskii, A. S. Kholodov, Nauka, M., 2001

[2] K. S. Basniev, I. N. Kochina, V. M. Maksimov, Podzemnaya gidromekhanika, Nedra, M., 1993, 416 pp.

[3] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[4] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike: novaya model vyazkogo gaza. Algoritmy, parallelnaya realizatsiya, prilozheniya, MGU, M., 1999

[5] B. N. Chetverushkin, M. A. Trapeznikova, M. S. Belotserkovskaya, “Analog kineticheski-soglasovannykh skhem dlya modelirovaniya zadach filtratsii”, Matematicheskoe modelirovanie, 14:10 (2002), 69–78 | MR

[6] N. S. Bakhvalov, T. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[7] E. Onate, M. Manzan, “Stabilization Techniques for Finite Element Analysis of Convection-Diffusion Problems”, Computational Analysis of Heat Transfer, CIMNE 183, p. 43, February 2000, eds. G. Comini, B. Sunden, WIT Press, Southampton, 2000

[8] B. N. Chetverushkin, “Problema effektivnogo ispolzovaniya mnogoprotsessornykh vychislitelnykh sistem”, Informatsionnye tekhnologii i vychislitelnye sistemy, 2 (2000), 22–34

[9] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1982 | Zbl

[10] B. F. Smith, P. E. Bjorstad, W. D. Gropp, Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations, University Press, Cambridge, 1996 | MR