The instability regimes of transonic flow over an airfoil
Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 101-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical simulation of inviscid transonic flow over symmetric airfoils is carried out. As shown, there exist both symmetric and nonsymmetric steady flow patterns in a range of freestream velocities at the vanishing incidence. The nonsymmetric patterns are stable with respect to small perturbation of the angle of attack and the freestream Mach number $M_\propto$. The symmetric flow is stable if $M_\propto$ does not coincide with a singular Mach number that depends on the airfoil under consideration.
@article{MM_2004_16_11_a8,
     author = {D. S. Semyonov},
     title = {The instability regimes of transonic flow over an airfoil},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--106},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_11_a8/}
}
TY  - JOUR
AU  - D. S. Semyonov
TI  - The instability regimes of transonic flow over an airfoil
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 101
EP  - 106
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_11_a8/
LA  - ru
ID  - MM_2004_16_11_a8
ER  - 
%0 Journal Article
%A D. S. Semyonov
%T The instability regimes of transonic flow over an airfoil
%J Matematičeskoe modelirovanie
%D 2004
%P 101-106
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_11_a8/
%G ru
%F MM_2004_16_11_a8
D. S. Semyonov. The instability regimes of transonic flow over an airfoil. Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 101-106. http://geodesic.mathdoc.fr/item/MM_2004_16_11_a8/

[1] A. Jameson, “Airfoils admitting non-unique solutions of the Euler equations”, AIAA Paper, 1991, no. 91-1625, 1–13

[2] A. G. Kuz'min, Boundary value problems for transonic flow, John Wiley, Chichester, 2002

[3] A. B. Ivanova, “Strukturnaya neustoichivost nevyazkogo transzvukovogo techeniya v kanale”, Inzh.-fiz. zhurn., 76:6 (2003)

[4] A. G. Kuzmin, A. V. Ivanova, “Needinstvennost nevyazkogo transzvukovogo techeniya okolo aerodinamicheskogo profilya”, Teplofiz. i aeromekh., 2004, no. 1

[5] B. Mohammadi, Fluid Dynamics computation with NSC2KE: an user-guide, Release 1.0, INRIA, Technical report RT-0164, 1994

[6] G. D. Van Albada, B. Van Leer, Flux vector splitting and Runge-Kutta methods for the Euler equations, ICASE Report 84-27, 1984.

[7] J. Steger, R. F. Warming, “Flux vector splitting for the inviscid gas dynamics with applications to finitedifference methods”, J. Comp. Phys., 40 (1983), 263–293 | DOI | MR

[8] M. M. Hafez, W. H. Guo, “Nonuniqueness of transonic flows”, Acta Mechanica, 138 (1999), 177–184 | DOI | MR | Zbl