On a diagnostics for transition zone of dispersion-hardened composite
Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 120-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of refinement for dispersion-hardened composite effective elastic characteristics with account of transition zone “matrix-reinforcement” is considered. As a mathematical model for nondestructive testing is used diagnostic problem, consisting in determining of transition zone characteristics by results of measurement of elastic process parameters on the surface of the body. Suggested approach for solving transition zone diagnostic problem is based on linearization method. The decision of the problem is illustrated by numerical accounts.
@article{MM_2004_16_11_a10,
     author = {V. A. Lomazov},
     title = {On a diagnostics for transition zone of dispersion-hardened composite},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {120--128},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_11_a10/}
}
TY  - JOUR
AU  - V. A. Lomazov
TI  - On a diagnostics for transition zone of dispersion-hardened composite
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 120
EP  - 128
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_11_a10/
LA  - ru
ID  - MM_2004_16_11_a10
ER  - 
%0 Journal Article
%A V. A. Lomazov
%T On a diagnostics for transition zone of dispersion-hardened composite
%J Matematičeskoe modelirovanie
%D 2004
%P 120-128
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_11_a10/
%G ru
%F MM_2004_16_11_a10
V. A. Lomazov. On a diagnostics for transition zone of dispersion-hardened composite. Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 120-128. http://geodesic.mathdoc.fr/item/MM_2004_16_11_a10/

[1] Kravchuk A. S., Maiboroda V. P., Urzhumtsev Yu. S., Mekhanika polimernykh i kompozitsionnykh materialov: Eksperimentalnye i chislennye metody, Nauka, M., 1985, 304 pp. | MR

[2] Samarskii A. L., Vabishevich P. N., Matematicheskoe modelirovanie i vychislitelnyi eksperiment, Nauka, M., 2000

[3] Samarskii A. A., Mikhailov A. P., Matematicheskoe modelirovanie. Idei. Metody. Primery, Nauka, M., 2001, 320 pp. | Zbl

[4] Nemirovskii Yu. V., Yankovskii A. P., Ratsionalnoe proektirovanie armirovannykh konstruktsii, Nauka, Novosibirsk, 2002, 488 pp. | Zbl

[5] Richard T. C., “The mechanical behavior of a solid micro sphere filled composite”, J. Comp. Mater., 9:2 (1975), 108–113 | DOI

[6] Yanovskii Yu. G., Vlasov A. N., Voronin A. V., “Modelirovanie mekhanicheskogo povedeniya i svoistv mikroneodnorodnykh polimernykh sred i kompozitov s uchetom kharakteristik mezhfaznykh sloev”, Mekhanika kompozitsionnykh matrialov i konstruktsii, 3:3 (1997), 125–143

[7] Zgaevskii V. E., Yanovskii Yu. G., Vlasov A. N., Balabaev N. K., Karnet Yu. N., “Struktura i mikromekhanicheskie svoistva mezhfaznykh sloev polimernykh matrichnykh kompozitov”, Mekhanika kompozitsionnykh matrialov i konstruktsii, 5:2 (1999), 109–122

[8] Zgaevskii V. E., Yanovskii Yu. G., Snegireva N. S, Karnet Yu. N., Kovalev G. N., “Modelirovanie protsessa diffuzii v neodnorodnykh polimernykh sredakh i kompozitakh”, Mekhanika kompozitsionnykh matrialov i konstruktsii, 4:2 (1998), 80–87

[9] Zgaevskii V. E., Yanovskii Yu. G., Vlasov A. N., Karnet Yu. N., Teplukhina E. I., “Uprugie svoistva polimernogo kompozita s uchetom molekulyarnykh i strukturnykh parametrov mezhfaznogo sloya”, Mekhanika kompozitsionnykh matrialov i konstruktsii, 6:1 (2000), 141–150

[10] Chalmers B., Fizicheskoe materialovedenie, Metallurgizdat, M., 1963, 455 pp.

[11] Seredenko V. N., “Fenomenologicheskaya model perekhodnogo sloya v kompozitnykh materialakh s uchetom khimicheskogo vzaimodeistviya komponentov”, Dokl. AN USSR. Ser A, 1981, no. 8, 54–58

[12] Nemirovskii Yu. V., Pyataev S. F., “Granitsa uprugogo povedeniya kompozitnogo materiala s polymi sfericheskimi vklyucheniyami i perekhodnoi zonoi”, Mekhanika kompozitnykh materialov, 1988, no. 4, 636–643

[13] Nemirovskii Yu. V., Pyataev S. F., “Prochnost i zhestkost kompozitnykh materialov voloknistoi struktury s uchetom perekhodnoi zony”, Prikl. Mekhanika, 27:10 (1991), 61–67

[14] Nemirovskii Yu. V., Pyataev S. F., “Effektivnye moduli uprugosti dispersno-uprochnennogo materiala s uchetom perekhodnoi zony”, Mekhanika mikroneodnorodnykh struktur, UrO AN SSSR, Sverdlovsk, 1988, 126–136

[15] Lomazov V. A., “Zadacha diagnostiki uprugikh poluogranichennykh tel”, Prikladnaya matematika i mekhanika, 53:5 (1989), 766–772 | MR | Zbl

[16] Lomazov V. A., “Matematicheskaya model teplovoi diagnostiki kompozitnogo materiala, armirovannogo odnonapravlennym semeistvom volokon”, Matematicheskoe modelirovanie, 2:7 (1990), 110–115 | Zbl

[17] Lomazov V. A., Nemirovskii Yu. V., “Uchet termochuvstvitelnosti v zadache diagnostiki termouprugikh sred”, Prikladnaya mekhanika i tekhnicheskaya fizika, 44:1 (2003), 176–184 | Zbl

[18] Lomazov V. A., “Ob odnoi postanovke zadachi diagnostiki ostatochnykh napryazhenii v sloistykh sredakh”, Mekhanika kompozitsionnykh materialov i konstruktsii, 9:2 (2003), 181–190

[19] Yakhno V. G., Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990, 304 pp. | MR | Zbl

[20] Vorovich I. I., Babeshko V. A., Pryakhina O. D., Dinamika massivnykh tel i rezonansnye yavleniya v deformiruemykh sredakh, Nauchnyi mir, M., 1999, 246 pp.

[21] Ispytatelnaya tekhnika: spravochnik, ed. V. V. Klyueva, Mashinostroenie, M., 1982, kn. 1, 528 s., kn. 2, 560 s.

[22] Prigorovskii N. I., Metody i sredstva opredeleniya polei deformatsii i napryazhenii: spravochnik, Mashinostroenie, M., 1983, 248 pp.

[23] Mikelson A. E., Chernyi Z. D., Elektrodinamicheskoe vozbuzhdenie i izmerenie kolebanii v metallakh, Zinatne, Riga, 1979, 152 pp.