The Euler--McLoren formulae of high orders
Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 64-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simple method was proposed to constructe the Euler–Mac Loren formulae of high orders for numerical integration. The first six terms of these formulae were found. This gave accuracy up to $O(h^{14})$. An interesting application was noticed for numerical integration of periodic functions.
@article{MM_2004_16_10_a5,
     author = {N. N. Kalitkin},
     title = {The {Euler--McLoren} formulae of high orders},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--66},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_10_a5/}
}
TY  - JOUR
AU  - N. N. Kalitkin
TI  - The Euler--McLoren formulae of high orders
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 64
EP  - 66
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_10_a5/
LA  - ru
ID  - MM_2004_16_10_a5
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%T The Euler--McLoren formulae of high orders
%J Matematičeskoe modelirovanie
%D 2004
%P 64-66
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_10_a5/
%G ru
%F MM_2004_16_10_a5
N. N. Kalitkin. The Euler--McLoren formulae of high orders. Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 64-66. http://geodesic.mathdoc.fr/item/MM_2004_16_10_a5/