Instability of inviscid transonic flow in a channel
Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 35-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study numerically inviscid transonic flow in a channel with a bump modelling an airfoil which is placed on the lower wall. The location of shock waves and supersonic zones are analysed for a range of the Mach number prescribed at the outlet. Computations demonstrate the existence of singular freestream Mach numbers which trigger off the flow instability and yield discontinuous changes in the steady flow structure and pressure distribution on the airfoil.
@article{MM_2004_16_10_a3,
     author = {A. G. Kuz'min and A. V. Ivanova},
     title = {Instability of inviscid transonic flow in a channel},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--40},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_10_a3/}
}
TY  - JOUR
AU  - A. G. Kuz'min
AU  - A. V. Ivanova
TI  - Instability of inviscid transonic flow in a channel
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 35
EP  - 40
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_10_a3/
LA  - ru
ID  - MM_2004_16_10_a3
ER  - 
%0 Journal Article
%A A. G. Kuz'min
%A A. V. Ivanova
%T Instability of inviscid transonic flow in a channel
%J Matematičeskoe modelirovanie
%D 2004
%P 35-40
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_10_a3/
%G ru
%F MM_2004_16_10_a3
A. G. Kuz'min; A. V. Ivanova. Instability of inviscid transonic flow in a channel. Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 35-40. http://geodesic.mathdoc.fr/item/MM_2004_16_10_a3/

[1] Pfenninger W., Viken J., Vemuru C. S., Volpe G, “All laminar supercritical LFC airfoils with natural laminar flow in the region of the main wing structure”, AIAA Paper, 1986, no. 86–2625, 1–45

[2] Kuz'min A. G., Boundary Value Problems for Transonic Flow, Wiley, Chichester, 2002, 304 pp.

[3] Ivanova A. V., “Vliyanie krivizny aerodinamicheskogo profilya na strukturu transzvukovogo techeniya”, Inzh.-fiz. zhurn., 75:6 (2002), 104–108

[4] Kuz'min A. G., “Interaction of a shock wave with the sonic line”, IUTAM Symposium Transsonicum IV, Kluwer Academic Publishers, Dordrecht, 2003, 13–18

[5] Ivanova A. V., “Strukturnaya neustoichivost nevyazkogo transzvukovogo techeniya v kanale”, Inzh.-fiz. zhurn., 76:6 (2003), 58–60 | MR

[6] Fletcher K., Chislennye metody v dinamike zhidkostei, 2, Mir, M., 1990, 552 pp. | MR

[7] Eidelman S., Colella Ph., Shreeve R. P., “Application of the Godunov method and its second-order extension to cascade flow modeling”, AIAA Paper, 1983, no. 83–1941, 1–9

[8] Kotov A. I., Kuzmin A. G., “Struktura transzvukovogo techeniya so slabymi udarnymi volnami v mestnoi sverkhzvukovoi oblasti”, Vestnik SPbGU, 1:Z (2000), 87–91

[9] Yang J. Y., “Uniformly second-order-accurate essentially nonoscillatory schemes for the Euler equations”, AIAA J., 28 (1990), 2069–2076 | DOI

[10] Koul Dzh.,Kuk L., Transzvukovaya aerodinamika, Mir, M., 1989, 360 pp.