Natural histospline
Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 49-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Histospline methods are considered. Natural histospline is proposed for approximation of a density function. Alternative methods are examined including methods providing density to be positive. Methods are illustrated with data on income distribution in Russia.
@article{MM_2003_15_9_a3,
     author = {N. M. Shlyakhov},
     title = {Natural histospline},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--54},
     publisher = {mathdoc},
     volume = {15},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_9_a3/}
}
TY  - JOUR
AU  - N. M. Shlyakhov
TI  - Natural histospline
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 49
EP  - 54
VL  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_9_a3/
LA  - ru
ID  - MM_2003_15_9_a3
ER  - 
%0 Journal Article
%A N. M. Shlyakhov
%T Natural histospline
%J Matematičeskoe modelirovanie
%D 2003
%P 49-54
%V 15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_9_a3/
%G ru
%F MM_2003_15_9_a3
N. M. Shlyakhov. Natural histospline. Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 49-54. http://geodesic.mathdoc.fr/item/MM_2003_15_9_a3/

[1] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986 | MR | Zbl

[2] K. de Bor, Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl

[3] N. N. Kalitkin, N. M. Shlyakhov, “Interpolyatsiya $B$-splainami”, Matem. modelirovanie, 14:4 (2002), 109–120 | MR | Zbl

[4] N. N. Kalitkin, N. M. Shlyakhov, “$B$-splainy vysokikh stepenei”, Matem. modelirovanie, 11:11 (1999), 64–74 | MR

[5] N. N. Kalitkin, L. V. Kuzmina, “Estestvennye interpolyatsionnye splainy vysokikh stepenei”, Matem. modelirovanie, 9:6 (1997), 67–81 | MR | Zbl