Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the Schrodinger equation with an arbitrary potential
Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The singular perturbed differential equation of the relativistic quantum mechanics (the analog of Schrodinger equation in the relativistic configuration space) with small parameters at the higher derivatives and with an arbitrary potential is considered. Boundary value problems on a final segment and on a positive semiray for determinating of eigenfunctions and eigenvalues are formulated for this equation and their asymptotical behavior is investigated at diminuting of the small parameter. Asymptotic methods of the singular perturbed theory were applied for this purpose and small parameter asymptotic approximations of solutions are constructed. The obtained results show that an application of asymptotic methods for the given class of boundary value problems is very effective.
@article{MM_2003_15_9_a0,
     author = {I. V. Amirkhanov and E. P. Zhidkov and I. E. Zhidkova and S. A. Vasilyev},
     title = {Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the {Schrodinger} equation with an arbitrary potential},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {15},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_9_a0/}
}
TY  - JOUR
AU  - I. V. Amirkhanov
AU  - E. P. Zhidkov
AU  - I. E. Zhidkova
AU  - S. A. Vasilyev
TI  - Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the Schrodinger equation with an arbitrary potential
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 3
EP  - 16
VL  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_9_a0/
LA  - ru
ID  - MM_2003_15_9_a0
ER  - 
%0 Journal Article
%A I. V. Amirkhanov
%A E. P. Zhidkov
%A I. E. Zhidkova
%A S. A. Vasilyev
%T Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the Schrodinger equation with an arbitrary potential
%J Matematičeskoe modelirovanie
%D 2003
%P 3-16
%V 15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_9_a0/
%G ru
%F MM_2003_15_9_a0
I. V. Amirkhanov; E. P. Zhidkov; I. E. Zhidkova; S. A. Vasilyev. Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the Schrodinger equation with an arbitrary potential. Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2003_15_9_a0/

[1] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cimento, 29 (1963), 380 | DOI | MR

[2] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cimento, 30 (1963), 134 | DOI | MR

[3] A. A. Logunov, A. N. Tavkhelidze, Phys. Lett., 4 (1963), 325 | DOI | MR | Zbl

[4] V. G. Kadyshevsky, Nucl. Phys. B, 6 (1968), 125 | DOI

[5] V. G. Kadyshevsky, M. Mateev, Nuovo Cimento A, 55 (1967), 275 | DOI

[6] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cimento A, 55 (1968), 1233

[7] E. P. Zhidkov, V. G. Kadyshevskii, Yu.V. Katyshev, TMF, 3:2 (1970), 191–196 | MR

[8] A. N. Tikhonov, Matem. sb., 31(73):3 (1952), 575–586 | MR | Zbl

[9] M. I. Vishik, L. A. Lyusternik, UMN, 12:5(77) (1957), 3–122 | MR | Zbl

[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[11] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[12] V. F. Butuzov, N. N. Nefedov, E. V. Fedotova, ZhVM i MF, 27:2 (1987) | MR

[13] V. F. Butuzov, N. N. Nefedov, E. V. Polezhaeva, ZhVM i MF, 29:7 (1989) | MR | Zbl

[14] N. Danford, Dzh. Shvarts, Lineinye operatory, T. 3, Mir, M., 1974

[15] A. G. Kurosh, Kurs vysshei algebry, M., 1971 | Zbl