High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 99-112
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Robin boundary value problem for a singularly perturbed parabolic PDE with convection is considered on an interval. The highest space derivatives in the equation and in the boundary condition contain the perturbation parameter e. For such problems the errors of well-known numerical methods increase unboundedly as $\varepsilon\ll N^{-1}$, where $N$ is the number of mesh points over the interval. For the case of sufficiently smooth data, it is easy to construct a standard finite difference operator and a piecewise uniform mesh condensing in the boundary layer, which give an e-uniformly convergent difference scheme. The order of convergence for such a scheme is exactly one and up to a small logarithmic factor one with respect to the time and space variables, respectively. In this paper we construct high-order time-accurate $\varepsilon$-uniformly convergent schemes by a defect correction technique. The efficiency of the new defect-correction schemes is confirmed with numerical experiments.
@article{MM_2003_15_8_a8,
     author = {P. W. Hemker and G. I. Shishkin and L. P. Shishkina},
     title = {High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with {Robin} boundary conditions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--112},
     year = {2003},
     volume = {15},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/}
}
TY  - JOUR
AU  - P. W. Hemker
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 99
EP  - 112
VL  - 15
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/
LA  - ru
ID  - MM_2003_15_8_a8
ER  - 
%0 Journal Article
%A P. W. Hemker
%A G. I. Shishkin
%A L. P. Shishkina
%T High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
%J Matematičeskoe modelirovanie
%D 2003
%P 99-112
%V 15
%N 8
%U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/
%G ru
%F MM_2003_15_8_a8
P. W. Hemker; G. I. Shishkin; L. P. Shishkina. High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/

[1] Farrell P. A., Hemker P. W., Shishkin G. I., “Discrete approximations for singularly perturbed boundary value problems with parabolic layers”, J. Comput. Mathematics, 14:1 (1996), 71–97 | MR | Zbl

[2] Hemker P. W., Shishkin G. I., “On a class of singularly perturbed boundary value problems for which an adaptive mesh technique is necessary”, Proceedings of the Second International Colloquium on Numerical Analysis, eds. D. Bainov, V. Covachev, International Science Publishers, 1994, 83–92 | MR | Zbl

[3] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, ZAMM, 77:1 (1997), 59–74 | DOI | MR | Zbl

[4] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Anal., 20:1 (2000), 99–121 | DOI | MR | Zbl

[5] Hemker P. W., Shishkin G. I., Shishkina L. P., “The numerical solution of a Neumann problem for parabolic singular perturbed equations with high-order time-accuracy”, Recent Advances in Numerical Methods and Applications,II, Proceedings of the Fourth International Conference (Sofia, Bulgaria, August 1998), eds. O. P. Iliev, M. S. Kaschiev, S. D. Margenov et al., Word Scientific, Singapore, 1999, 27–39 | MR | Zbl

[6] Hemker P. W., Shishkin G. I., Shishkina L. P., High-order time-accurate schemes for parabolic singular perturbation problems with convection, CWI Reports and Notes. Modelling, Analysis and Simulation (MAS) Report Series, MAS-R0101, Amsterdam, the Netherlands, January 31, 2001, submitted for publication

[7] Samarsky A. A., Theory of Difference Schemes, Nauka, M., 1989 | MR

[8] Shishkin G. L., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, UrO RAN, Ekaterinburg, 1992

[9] USSR Comput. Maths. Math. Phys., 29:4 (1989), 1–10 | DOI | MR | Zbl

[10] Shishkin G. L, “Grid approximations of singularly perturbed elliptic equations in domains with characteristic faces”, Sov. J. Numer. Anal. Math. Modelling, 5:4–5 (1990), 327–343 | DOI | MR | Zbl

[11] Kolmogorov V. L., Shishkin G. L, “Numerical methods for singularly perturbed boundary value problems modeling diffusion processes”, Singular Perturbation Problems in Chemical Physics, ed. Miller J. J. H., John Willey and Sons, New York, 1997, 181–362

[12] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967; Transl. of Math. Monographs, 23, AMS, Providence, RI, 1968 | Zbl