@article{MM_2003_15_8_a8,
author = {P. W. Hemker and G. I. Shishkin and L. P. Shishkina},
title = {High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with {Robin} boundary conditions},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {99--112},
year = {2003},
volume = {15},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/}
}
TY - JOUR AU - P. W. Hemker AU - G. I. Shishkin AU - L. P. Shishkina TI - High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions JO - Matematičeskoe modelirovanie PY - 2003 SP - 99 EP - 112 VL - 15 IS - 8 UR - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/ LA - ru ID - MM_2003_15_8_a8 ER -
%0 Journal Article %A P. W. Hemker %A G. I. Shishkin %A L. P. Shishkina %T High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions %J Matematičeskoe modelirovanie %D 2003 %P 99-112 %V 15 %N 8 %U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/ %G ru %F MM_2003_15_8_a8
P. W. Hemker; G. I. Shishkin; L. P. Shishkina. High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/
[1] Farrell P. A., Hemker P. W., Shishkin G. I., “Discrete approximations for singularly perturbed boundary value problems with parabolic layers”, J. Comput. Mathematics, 14:1 (1996), 71–97 | MR | Zbl
[2] Hemker P. W., Shishkin G. I., “On a class of singularly perturbed boundary value problems for which an adaptive mesh technique is necessary”, Proceedings of the Second International Colloquium on Numerical Analysis, eds. D. Bainov, V. Covachev, International Science Publishers, 1994, 83–92 | MR | Zbl
[3] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, ZAMM, 77:1 (1997), 59–74 | DOI | MR | Zbl
[4] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Anal., 20:1 (2000), 99–121 | DOI | MR | Zbl
[5] Hemker P. W., Shishkin G. I., Shishkina L. P., “The numerical solution of a Neumann problem for parabolic singular perturbed equations with high-order time-accuracy”, Recent Advances in Numerical Methods and Applications,II, Proceedings of the Fourth International Conference (Sofia, Bulgaria, August 1998), eds. O. P. Iliev, M. S. Kaschiev, S. D. Margenov et al., Word Scientific, Singapore, 1999, 27–39 | MR | Zbl
[6] Hemker P. W., Shishkin G. I., Shishkina L. P., High-order time-accurate schemes for parabolic singular perturbation problems with convection, CWI Reports and Notes. Modelling, Analysis and Simulation (MAS) Report Series, MAS-R0101, Amsterdam, the Netherlands, January 31, 2001, submitted for publication
[7] Samarsky A. A., Theory of Difference Schemes, Nauka, M., 1989 | MR
[8] Shishkin G. L., Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, UrO RAN, Ekaterinburg, 1992
[9] USSR Comput. Maths. Math. Phys., 29:4 (1989), 1–10 | DOI | MR | Zbl
[10] Shishkin G. L, “Grid approximations of singularly perturbed elliptic equations in domains with characteristic faces”, Sov. J. Numer. Anal. Math. Modelling, 5:4–5 (1990), 327–343 | DOI | MR | Zbl
[11] Kolmogorov V. L., Shishkin G. L, “Numerical methods for singularly perturbed boundary value problems modeling diffusion processes”, Singular Perturbation Problems in Chemical Physics, ed. Miller J. J. H., John Willey and Sons, New York, 1997, 181–362
[12] Ladyzhenskaya O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967; Transl. of Math. Monographs, 23, AMS, Providence, RI, 1968 | Zbl