High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 99-112

Voir la notice de l'article provenant de la source Math-Net.Ru

The Robin boundary value problem for a singularly perturbed parabolic PDE with convection is considered on an interval. The highest space derivatives in the equation and in the boundary condition contain the perturbation parameter e. For such problems the errors of well-known numerical methods increase unboundedly as $\varepsilon\ll N^{-1}$, where $N$ is the number of mesh points over the interval. For the case of sufficiently smooth data, it is easy to construct a standard finite difference operator and a piecewise uniform mesh condensing in the boundary layer, which give an e-uniformly convergent difference scheme. The order of convergence for such a scheme is exactly one and up to a small logarithmic factor one with respect to the time and space variables, respectively. In this paper we construct high-order time-accurate $\varepsilon$-uniformly convergent schemes by a defect correction technique. The efficiency of the new defect-correction schemes is confirmed with numerical experiments.
@article{MM_2003_15_8_a8,
     author = {P. W. Hemker and G. I. Shishkin and L. P. Shishkina},
     title = {High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with {Robin} boundary conditions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--112},
     publisher = {mathdoc},
     volume = {15},
     number = {8},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/}
}
TY  - JOUR
AU  - P. W. Hemker
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 99
EP  - 112
VL  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/
LA  - ru
ID  - MM_2003_15_8_a8
ER  - 
%0 Journal Article
%A P. W. Hemker
%A G. I. Shishkin
%A L. P. Shishkina
%T High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions
%J Matematičeskoe modelirovanie
%D 2003
%P 99-112
%V 15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/
%G ru
%F MM_2003_15_8_a8
P. W. Hemker; G. I. Shishkin; L. P. Shishkina. High-order time-accurate schemes for parabolic singular perturbation convection-diffusion problems with Robin boundary conditions. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 99-112. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a8/