Model of gas flow near the media interface surface
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 88-98
Cet article a éte moissonné depuis la source Math-Net.Ru
Mathematical model is studied for the gas medium flow in the near-wall layer. The model envisages the velocity space division into the independent areas with further integration of the kinetic equation over these areas. Two types of approximating distribution functions are studied, which close the systems of moment equations obtained as a result of integration. Comparative analysis is presented for the Couette problem solutions obtained by the kinetic and proposed models.
@article{MM_2003_15_8_a7,
author = {Yu. A. Nikitchenko},
title = {Model of gas flow near the media interface surface},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {88--98},
year = {2003},
volume = {15},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a7/}
}
Yu. A. Nikitchenko. Model of gas flow near the media interface surface. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 88-98. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a7/
[1] Popov S. P., Cheremisin F. G., “Sovmestnoe reshenie uravnenii Boltsmana i pogranichnogo sloya”, Matem. modelirovanie, 12:7 (2000), 71–78 | Zbl
[2] Liu C. Y., Lees L., “Kinetic theory description of plane compressible flow”, Rarefied gas dynamics, Acad. Press, NY, 1961 | MR | Zbl
[3] Bhatnagar P. L., Gross E. P., Krook M., “A model for collision processes in gases”, Phys. Review, 94:3 (1954), 511 | DOI | Zbl
[4] Svirschevskii S. B., Nikitchenko Yu. L., Kineticheskie metody v aerodinamike, Izd. MAI, M., 2001
[5] Shakhov E. M., Metod issledovaniya dvizhenii razrezhennogo gaza, VTs AN SSSR, M., 1975