Spline smoothing optimization
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 34-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spline smoothing algorithms are considered in the article. An optimal smoothing spline is proposed instead of a spline in the convex set. The optimal smoothing is based on minimization of the functional with the sum of squares of the highest derivative discontinuities. The optimal smoothing is much more simple and provides better accuracy.
@article{MM_2003_15_8_a3,
     author = {N. M. Shlyakhov},
     title = {Spline smoothing optimization},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {34--38},
     publisher = {mathdoc},
     volume = {15},
     number = {8},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/}
}
TY  - JOUR
AU  - N. M. Shlyakhov
TI  - Spline smoothing optimization
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 34
EP  - 38
VL  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/
LA  - ru
ID  - MM_2003_15_8_a3
ER  - 
%0 Journal Article
%A N. M. Shlyakhov
%T Spline smoothing optimization
%J Matematičeskoe modelirovanie
%D 2003
%P 34-38
%V 15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/
%G ru
%F MM_2003_15_8_a3
N. M. Shlyakhov. Spline smoothing optimization. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 34-38. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/

[1] V. V. Vershinin, Yu. S. Zavyalov, N. N. Pavlov, Ekstremalnye svoistva splainov i zadacha sglazhivaniya, Nauka, Novosibirsk, 1988 | MR | Zbl

[2] N. N. Kalitkin, N. M. Shlyakhov, “$B$-splainy vysokikh stepenei”, Matem. modelirovanie, 11:11 (1999), 64–74 | MR

[3] K. de Bor, Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl

[4] V. A. Vasilenko, Splain-funktsii: teorii, algoritmy, programmy, Nauka, Novosibirsk, 1983

[5] N. N. Kalitkin, N. M. Shlyakhov, “Interpolyatsiya $B$-splainami”, Matem. modelirovanie, 14:4 (2002), 109–120 | MR | Zbl

[6] N. N. Kalitkin, L. V. Kuzmina, “Srednekvadratichnaya approksimatsiya splainami”, Matem. modelirovanie, 9:9 (1997), 107–116 | MR | Zbl