Spline smoothing optimization
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 34-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Spline smoothing algorithms are considered in the article. An optimal smoothing spline is proposed instead of a spline in the convex set. The optimal smoothing is based on minimization of the functional with the sum of squares of the highest derivative discontinuities. The optimal smoothing is much more simple and provides better accuracy.
@article{MM_2003_15_8_a3,
author = {N. M. Shlyakhov},
title = {Spline smoothing optimization},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {34--38},
year = {2003},
volume = {15},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/}
}
N. M. Shlyakhov. Spline smoothing optimization. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 34-38. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a3/
[1] V. V. Vershinin, Yu. S. Zavyalov, N. N. Pavlov, Ekstremalnye svoistva splainov i zadacha sglazhivaniya, Nauka, Novosibirsk, 1988 | MR | Zbl
[2] N. N. Kalitkin, N. M. Shlyakhov, “$B$-splainy vysokikh stepenei”, Matem. modelirovanie, 11:11 (1999), 64–74 | MR
[3] K. de Bor, Prakticheskoe rukovodstvo po splainam, Radio i svyaz, M., 1985 | MR | Zbl
[4] V. A. Vasilenko, Splain-funktsii: teorii, algoritmy, programmy, Nauka, Novosibirsk, 1983
[5] N. N. Kalitkin, N. M. Shlyakhov, “Interpolyatsiya $B$-splainami”, Matem. modelirovanie, 14:4 (2002), 109–120 | MR | Zbl
[6] N. N. Kalitkin, L. V. Kuzmina, “Srednekvadratichnaya approksimatsiya splainami”, Matem. modelirovanie, 9:9 (1997), 107–116 | MR | Zbl