Solution of an ellipsoidal statistical model in the problem on thermal creep of a rarefied gas along a spherical surface
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 118-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analytical solution of a half-space boundary-value problem is constructed for an inhomogeneous kinetic Boltzmann equation with the collision operator in the form of an ellipsoidal statistical model in the problem on thermal creep of a rarified gas along a spherical surface. Correction to the thermal creep coefficient is obtained in the linear approximation with respect to the Knudsen number, allowing for the interfacial curvature.
@article{MM_2003_15_8_a10,
     author = {A. V. Latyshev and V. N. Popov and A. A. Yushkanov},
     title = {Solution of an ellipsoidal statistical model in the problem on thermal creep of a rarefied gas along a spherical surface},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {118--128},
     publisher = {mathdoc},
     volume = {15},
     number = {8},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a10/}
}
TY  - JOUR
AU  - A. V. Latyshev
AU  - V. N. Popov
AU  - A. A. Yushkanov
TI  - Solution of an ellipsoidal statistical model in the problem on thermal creep of a rarefied gas along a spherical surface
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 118
EP  - 128
VL  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a10/
LA  - ru
ID  - MM_2003_15_8_a10
ER  - 
%0 Journal Article
%A A. V. Latyshev
%A V. N. Popov
%A A. A. Yushkanov
%T Solution of an ellipsoidal statistical model in the problem on thermal creep of a rarefied gas along a spherical surface
%J Matematičeskoe modelirovanie
%D 2003
%P 118-128
%V 15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a10/
%G ru
%F MM_2003_15_8_a10
A. V. Latyshev; V. N. Popov; A. A. Yushkanov. Solution of an ellipsoidal statistical model in the problem on thermal creep of a rarefied gas along a spherical surface. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 118-128. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a10/

[1] Cherchinyani K., Matematicheskie metody v kineticheskoi teorii gazov, Mir, M., 1973 | MR

[2] Bobylev A. V., Tochnye i priblizhennye metody v teorii nelineinykh kineticheskikh uravnenii Boltsmana i Landau, Preprint in. prikl. matem. im. M. V. Keldysha, 1987 | MR | Zbl

[3] Yalamov Yu. I., Poddoskin A. A., Yushkanov A. A., “O granichnykh usloviyakh pri obtekanii neodnorodno nagretym gazom sfericheskoi poverkhnosti maloi krivizny”, Dokl. AN SSSR, 254:2 (1980), 343–346 | MR

[4] Loyalka S. K., “The $Q_n$ and $F_n$ integrals for the BGK model”, Transport Theory and Statistical Physics, 4 (1975), 55–65 | DOI

[5] Cercignani C., Tironi G., “Some application of a linearized kinetic model with correct Prandtl number”, Nuovo Chimento, 43 (1966), 64–68 | DOI

[6] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR