3D acoustic wave tracing in turbulent flows
Matematičeskoe modelirovanie, Tome 15 (2003) no. 7, pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with digital acoustical ray tracing in 3D turbulent flows with a fluctuating acoustical index of refraction. The paths of the rays through the flow fields are computed from the ray equation in assumption of geometrical optics (short wavelengths). The refractive index field is prescribed on a $64\times64\times64$ grid using data from 3D direct numerical simulation of turbulence. The possibilities to reconstruct 3D correlation functions of the turbulence are analysed using 2D maps of the deflection angles of acoustic waves traces and a novel Erbeck–Merzkirch inverse integral transform. The last inversion is refered to ill-posed mathematical problems and some regularization techniques developed before for the Radon transform are applied.
@article{MM_2003_15_7_a8,
     author = {N. A. Fomin and E. I. Lavinskaya and C. Greated},
     title = {3D acoustic wave tracing in turbulent flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--80},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_7_a8/}
}
TY  - JOUR
AU  - N. A. Fomin
AU  - E. I. Lavinskaya
AU  - C. Greated
TI  - 3D acoustic wave tracing in turbulent flows
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 75
EP  - 80
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_7_a8/
LA  - ru
ID  - MM_2003_15_7_a8
ER  - 
%0 Journal Article
%A N. A. Fomin
%A E. I. Lavinskaya
%A C. Greated
%T 3D acoustic wave tracing in turbulent flows
%J Matematičeskoe modelirovanie
%D 2003
%P 75-80
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_7_a8/
%G ru
%F MM_2003_15_7_a8
N. A. Fomin; E. I. Lavinskaya; C. Greated. 3D acoustic wave tracing in turbulent flows. Matematičeskoe modelirovanie, Tome 15 (2003) no. 7, pp. 75-80. http://geodesic.mathdoc.fr/item/MM_2003_15_7_a8/

[1] D. Han, C. A. Greated, “Acoustic measurements in flows using photon correlation spectroscopy”, Meas. Sci. Technol., 4 (1993), 157–164

[2] F. Denis, O. Basset, G. Gimenez, “Ultrasonic transmission tomography in refracting media: reduction of refraction artefacts by curved-ray techniques”, IEEE Transactions on Medical Imaging, 14 (1995), 173–188 | DOI

[3] D. R. Velis, T. J. Ulrych, “Simulated annealing ray tracing in complex three-dimensional media”, Geophysical Journal International, 145:2 (2001), 447–459 | DOI

[4] A. H. Andersen, A. C. Kak, “Digital ray tracing in two-dimensional refractive fields”, J. Acoust. Soc. Am., 72:5 (1982), 1593–1606 | DOI | MR | Zbl

[5] E. I. Lavinskaya, E. F. Nogotov, N. A. Fomin, “Direct numerical simulation of laser rays tracing in heterogeneous media”, Proc. of the XI Int. Conference on Advanced Numerical Simulation and Software, Moscow Aviation Institute, 2001, 243–245

[6] V. I. Tatarski, Wave Propagation in a Turbulent Medium, McGray-Hill, New York, 1961 | MR | Zbl

[7] L. Hesselink, B. Sturtevant, “Propagation of weak shocks through a random medium”, Journal of Fluid Mechanics, 196 (1988), 513–533 | DOI

[8] N. Fomin, C. Greated, “Acoustic Wave Tracing in Turbulent Flows”, Modern Problems of Combustion and Its Applications, Proc. of II Int. School-Seminar, Minsk, 1997, 108–112

[9] L. A. Chernov, Wave Propagation in a Random Media, Dover Publ. Inc., New York, 1967

[10] Sharma, D. Kumar, A. K. Ghatak, “Tracing rays through gradient-index media: a new method”, Applied Optics, 21 (1982), 984–987 | DOI

[11] E. Lavinskaja, E. Nogotov, N. Fomin, “Statistical analysis of turbulence by the speckle-photography of flow data”, Reports of Academy of Sciences of Belarus, 41 (1997), 53–57

[12] T. Gerz, U. Schumann, “Direct simulation of homogeneous turbulence and gravity waves in sheared and unsheared stratified flows”, Journal of Fluid Mechanics, 280 (1994), 1–40 | DOI | Zbl

[13] M. M. Weiner, “Atmospheric turbulence in optical surveillance systems”, Journal Applied Optics, 6:11 (1967), 1984–1991 | DOI

[14] R. Erbeck, W. Merzkirch, “Speckle photographic measurements of turbulence in an air stream with fluctuating temperature”, Experiments in Fluids, 6 (1988), 89–93

[15] N. Fomin, Speckle Photography for Fluid Mechanics Measurements, Springer-Verlag, Berlin, 1998