Conjugation of Prandtl--Meyer wave with quasi-one-dimensional flow region
Matematičeskoe modelirovanie, Tome 15 (2003) no. 6, pp. 111-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model of conjugated isentropic streams in Prandtl–Меуег wave and quasi-one-dimensional flow region is created. Solution characterizing the geometry of stream-dividing slipstream was obtained owing to analysis of conditions of dynamical coexistence. Parametric analysis of the solution is conducted; the features of conjugated flow fields and conditions of their coexistence are investigated as well. The results obtained can be used in construction of approximate analytical models of some perfect gas flows and algorithms for their calculation.
@article{MM_2003_15_6_a18,
     author = {V. N. Uskov and M. V. Chernyshov},
     title = {Conjugation of {Prandtl--Meyer} wave with quasi-one-dimensional flow region},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--119},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_6_a18/}
}
TY  - JOUR
AU  - V. N. Uskov
AU  - M. V. Chernyshov
TI  - Conjugation of Prandtl--Meyer wave with quasi-one-dimensional flow region
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 111
EP  - 119
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_6_a18/
LA  - ru
ID  - MM_2003_15_6_a18
ER  - 
%0 Journal Article
%A V. N. Uskov
%A M. V. Chernyshov
%T Conjugation of Prandtl--Meyer wave with quasi-one-dimensional flow region
%J Matematičeskoe modelirovanie
%D 2003
%P 111-119
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_6_a18/
%G ru
%F MM_2003_15_6_a18
V. N. Uskov; M. V. Chernyshov. Conjugation of Prandtl--Meyer wave with quasi-one-dimensional flow region. Matematičeskoe modelirovanie, Tome 15 (2003) no. 6, pp. 111-119. http://geodesic.mathdoc.fr/item/MM_2003_15_6_a18/

[1] Melnikov D. A., “Otrazhenie skachkov uplotneniya ot osi simmetrii”, Izv. AN SSSR. Ser. Mekhanika i mashinostroenie, 1962, no. 3, 24–30

[2] Averenkova G. I., Ashratov E. A., Volkonskaya T. G. i dr., Sverkhzvukovye strui idealnogo gaza, Ch. 2, Izd-vo MGU, 1971

[3] Avduevskii B. C., Ashratov E. A., Ivanov A. V., Pirumov U. G., Sverkhzvukovye neizobaricheskie strui, Mashinostroenie, M., 1985 | MR

[4] Azevedo D. J., Liu C. S., “Engineering approach to the prediction of shock patterns in bounded high-speed flows”, AIAA Journal, 31:1 (1993), 83–90 | DOI | MR | Zbl

[5] Medvedev A. E., Fomin V. M., “Priblizhenno-analiticheskii raschet makhovskoi konfiguratsii statsionarnykh udarnykh voln v ploskom suzhayuschemsya kanale”, Prikl. mekhanika i tekhn. fizika, 39:3 (1998), 52–58 | Zbl

[6] Henderson L. F., Lozzi A., “Experiments on transition to Mach reflection”, Journal of Fluid Mechanics, 68 (1975), 139–155 | DOI

[7] Henderson L. F., Lozzi A., “Further experiments on transition to Mach reflection”, Journal of Fluid Mechanics, 94 (1979), 541–559 | DOI

[8] Kudryavtsev A. N., Khotyanovsky D. V., Ivanov M. S., “Numerical simulation of asymmetrical steady shock wave interaction”, Computational Fluid Dynamics. Proceedings of ECCOMAS, Barcelona, 2000

[9] Kudryavtsev A. N., Khotyanovsky D. V., Ivanov M. S., Hadjadj A., Vandromme D., “Transition Between Regular and Mach Shock Interactions in Plane Overexpanded Jets”, AIAA, 2002, 0977

[10] Omelchenko A. V., Uskov V. N., Chernyshov V. N., “Priblizhenno-analiticheskie modeli techenii s makhovskim otrazheniem skachkov uplotneniya”, Tezisy dokl. IV Mezhdunarodnoi konferentsii po neravnovesnym protsessam v soplakh i struyakh XIX Mezhdunarodnogo seminara po struinym, otryvnym i nestatsionarnym techeniyam, Izd-vo MAI, M., 2002, 352–353

[11] Adrianov A. L., Starykh A. L., Uskov V. N., Interferentsiya statsionarnykh gazodinamicheskikh razryvov, Nauka, Novosibirsk, 1995