On some models of sorption systems with feedback
Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some different modelling aspects of sorption systems with feedback are considered. Mathematical models of sorption processes in closed and open systems with component interaction are proposed. Some basic ways of feedback modelling are formulated with different non-local or non-stationary boundary conditions.
@article{MM_2003_15_5_a2,
     author = {A. B. Evseev and A. V. Lukshin},
     title = {On some models of sorption systems with feedback},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_5_a2/}
}
TY  - JOUR
AU  - A. B. Evseev
AU  - A. V. Lukshin
TI  - On some models of sorption systems with feedback
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 17
EP  - 26
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_5_a2/
LA  - ru
ID  - MM_2003_15_5_a2
ER  - 
%0 Journal Article
%A A. B. Evseev
%A A. V. Lukshin
%T On some models of sorption systems with feedback
%J Matematičeskoe modelirovanie
%D 2003
%P 17-26
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_5_a2/
%G ru
%F MM_2003_15_5_a2
A. B. Evseev; A. V. Lukshin. On some models of sorption systems with feedback. Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 17-26. http://geodesic.mathdoc.fr/item/MM_2003_15_5_a2/

[1] Venitsianov E. V., Rubinshtein R. N., Dinamika sorbtsii iz zhidkikh sred, Nauka, M., 1983

[2] Zolotarëv P. P., Lukshin A. V. Ryutin A. A., “O matematicheskom modelirovanii protsessov dinamiki sorbtsii”, Vestnik MGU. ser. 15. VMK, 1981, no. 3, 56–64 | Zbl

[3] Rachinskii V. V., Vvedenie v obschuyu teoriyu dinamiki sorbtsii i khromatografii, Nauka, M., 1964

[4] Denisov A. M., “Edinstvennost resheniya nekotorykh obratnykh zadach neravnovesnoi dinamiki sorbtsii”, Vestnik MGU. ser. 15. VMK, 1986, 2, 25–30 | MR | Zbl

[5] Denisov A. M., Lukshin A. V., Matematicheskie modeli odnokomponentnoi dinamiki sorbtsii, Izd-vo MGU, M., 1989 | Zbl

[6] Tikhonov A. N. Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR

[7] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[8] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Diff. ur., 13:2 (1977), 294–306 | MR

[9] Ionkin N. I. Moiseev E. I., “O zadache dlya uravneniya teploprovodnosti s dvutochechnymi kraevymi usloviyami”, Diff. ur., 15:7 (1979), 1284–1295 | MR | Zbl

[10] Evseev A. B., O suschestvovanii resheniya pryamoi zadachi neravnovesnoi dinamiki sorbtsii s nestatsionarnym kraevym usloviem, Dep. v VINITI 05.11.2001, No 2308-V2001

[11] Golovanchikov A. B., Simonova I. E., Simonov B. V., “Reshenie diffuzionnoi zadachi s integralnym granichnym usloviem”, Fundamentalnaya i prikladnaya matematika, 7:2 (2001) | MR | Zbl

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR