Kinetic equations for some demography models
Matematičeskoe modelirovanie, Tome 15 (2003) no. 3, pp. 43-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical modeling method is applied to the civilization evolution problem. The principal approach to this problem is formulated in terms of population ages distribution function. The analysis of population surviving is given for the generalized model of stable population. The kinetic equation for the demography situation in Russia have been numerically solved up to 2020-2050 year.
@article{MM_2003_15_3_a3,
     author = {Yu. N. Orlov and V. M. Suslin},
     title = {Kinetic equations for some demography models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_3_a3/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - V. M. Suslin
TI  - Kinetic equations for some demography models
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 43
EP  - 54
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_3_a3/
LA  - ru
ID  - MM_2003_15_3_a3
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A V. M. Suslin
%T Kinetic equations for some demography models
%J Matematičeskoe modelirovanie
%D 2003
%P 43-54
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_3_a3/
%G ru
%F MM_2003_15_3_a3
Yu. N. Orlov; V. M. Suslin. Kinetic equations for some demography models. Matematičeskoe modelirovanie, Tome 15 (2003) no. 3, pp. 43-54. http://geodesic.mathdoc.fr/item/MM_2003_15_3_a3/