Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source
Matematičeskoe modelirovanie, Tome 15 (2003) no. 2, pp. 43-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

On an axis $\mathbb R$, we consider an initial value problem for a singularly perturbed parabolic reactiondiffusion equation in the presence of a moving concentrated source. Classical finite difference schemes for such problem converge only under the condition $\varepsilon\gg N^{-1}+N_0^{-1}$, where $\varepsilon$ is the singular perturbation parameter, the values $N$ and $N_0$ define the number of nodes in the grids with respect to $x$ (on a segment of unit length) and $t$. We study schemes on meshes which are locally refined in a neighbourhood of the set $\gamma^*$, that is, the trajectory of the moving source. It is shown that there are no schemes convergent $\varepsilon$-uniformly, in particular, for $\varepsilon=\mathscr O(N^{-2}+N_0^{-2})$, in the class of schemes based on classical approximations of the problem on “piecewise uniform” rectangular meshes which are locally condensing with respect to both $x$ and $t$. Using stencils with nonorthogonal (in $x$ and $t$) arms in the nearest neighbourhood of the set $\gamma^*$ and meshes condensing, along $x$, in the neighbourhood of $\gamma^*$, we construct schemes that converge euniformly with the rate $\mathscr O(N^{-k}\ln^kM+N_0^{-1})$, $k=1,2$.
@article{MM_2003_15_2_a3,
     author = {G. I. Shishkin},
     title = {Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {43--61},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_2_a3/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 43
EP  - 61
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_2_a3/
LA  - ru
ID  - MM_2003_15_2_a3
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source
%J Matematičeskoe modelirovanie
%D 2003
%P 43-61
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_2_a3/
%G ru
%F MM_2003_15_2_a3
G. I. Shishkin. Grid approximation for a singularly perturbed parabolic reaction-diffusion equation with a moving concentrated source. Matematičeskoe modelirovanie, Tome 15 (2003) no. 2, pp. 43-61. http://geodesic.mathdoc.fr/item/MM_2003_15_2_a3/