The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue
Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral problems with the eigenvalue-depending operator are usually appeared when the relative variants of the Schroedinger equation in the impulse space are considered. The eigenvalues and eigenfunctions calculation error caused by the numerical solving of such equations is the sum of the error entering the approximation of a continuous equation by the discret equations system with help the Bubnov–Galerkine method and the iterative method. It is shown that the iterative method error is one-two order smaller than for discretisation problem. Hense, the eigenvalues and eigenfunctions calculation accuracy of the spectral problem with the eigenvalue-depending operator is not worse then the linear spectral problem solution accuracy.
@article{MM_2003_15_1_a8,
     author = {E. P. Zhidkov and N. B. Skachkov and T. M. Solov'eva},
     title = {The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_1_a8/}
}
TY  - JOUR
AU  - E. P. Zhidkov
AU  - N. B. Skachkov
AU  - T. M. Solov'eva
TI  - The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 87
EP  - 100
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_1_a8/
LA  - ru
ID  - MM_2003_15_1_a8
ER  - 
%0 Journal Article
%A E. P. Zhidkov
%A N. B. Skachkov
%A T. M. Solov'eva
%T The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue
%J Matematičeskoe modelirovanie
%D 2003
%P 87-100
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_1_a8/
%G ru
%F MM_2003_15_1_a8
E. P. Zhidkov; N. B. Skachkov; T. M. Solov'eva. The accuracy estimation of the numerical solution of the spectral problem with the operator depending on the eigenvalue. Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/MM_2003_15_1_a8/

[1] T. M. Solov'eva, E. P. Zhidkov, Comp. Phys. Comm., 126 (2000), 168–177 | DOI | MR

[2] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380–399 | DOI | MR

[3] V. G. Kadyshevsky, P. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cim., 55 (1968), 232–257

[4] R. N. Faustov, Mezhd. zimnyaya shkola teor. fiziki pri OIYaI, 2, Dubna, 1964, 108–116

[5] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[6] Dzh. Kh. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970

[7] R. M. Bamett at al., Phys. Rev. D, 54 (1997), 21,65

[8] B. A. Arbuzov, E. E. Boos, V. I. Savrin, S. A. Shichanin, TMF, 83:2 (1990), 175–185

[9] V. V. Dvoeglazov, N. B. Skachkov, Yu. N. Tyukhtyaev, S. V. Khudyakov, YaF, 54 (1991), 658–668 | MR

[10] M. M. Gregush, E. P. Zhidkov, T. M. Makarenko i dr., Reshenie relivistskoi zadachi dvukh tel s nelineinoi zavisimostyu ot spektralnogo parametra, Soobschenie OIYaI R11-92-142, Dubna, 1992 | MR

[11] T. M. Solov'eva, Comp. Phys. Comm., 136 (2001), 208–211 | DOI

[12] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[13] B. N. Khoromskij, T. M. Makarenko, E. G. Nikonov et al., Proceedings of the International Conference on Programming and Mathematical met hods for Solving Physical Problem (Dubna, 1993), eds. Yu. Yu. Lobanov et al., World Scientific Publ., 1994, 210–214

[14] G. Streng, D. Fiks, Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[15] G. I. Marchuk, V. V. Shaidurov, Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[16] Fock V. A., Zc. Phys., 98 (1935), 145–159 | DOI

[17] G. A. Kozlov, S. P. Kuleshov, V. I. Savrin i dr., TMF, 60:1 (1984), 24–36

[18] G. Bete, E. Solpiter, Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatlit, M., 1960