Streamline of a plate with small periodic irregularities
Matematičeskoe modelirovanie, Tome 15 (2003) no. 11, pp. 91-109
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider streamline of a semiinfinite plate with periodic irregularities at high Reynolds numbers $\mathrm{Re}$ by viscous incompressible liquid. Characteristic scale of a plate profile is in accordance with a small parameter $\varepsilon=\mathrm{Re}^{-1/2}$. We received the analytical-numerical solution of the problem described above using the method of asymptotic analysis with the small parameter $\varepsilon$ and further solution of the boundary problem by numerical method. It has been proved that the solution will have three-deck structure. Furthermore, we numerically examined how a plate profile amplitude influenced the streamline process stationarity.
@article{MM_2003_15_11_a7,
author = {V. G. Danilov and K. Yu. Rossinskii},
title = {Streamline of a plate with small periodic irregularities},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {91--109},
year = {2003},
volume = {15},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2003_15_11_a7/}
}
V. G. Danilov; K. Yu. Rossinskii. Streamline of a plate with small periodic irregularities. Matematičeskoe modelirovanie, Tome 15 (2003) no. 11, pp. 91-109. http://geodesic.mathdoc.fr/item/MM_2003_15_11_a7/
[1] Smith F. T., “Laminar flow over a small hump on a flat plate”, J. Fluid Mech., 51:4 (1973)
[2] Danilov V. G., Makarova M. V., “Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities”, Russion Journal Of Mathematical Phisics, 2:1 (1994), John Wiley and Sons | MR
[3] Tikhonov A. H., Smarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR
[4] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5(77) (1957), 3–122 | MR | Zbl
[5] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., ispravl., Nauka, M., 1989 | MR