Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_11_a0, author = {Yu. N. Karamzin and I. V. Popov and S. V. Polyakov}, title = {Finite difference methods for continuum mechanics problems on triangular and tetrahedral grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--12}, publisher = {mathdoc}, volume = {15}, number = {11}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_11_a0/} }
TY - JOUR AU - Yu. N. Karamzin AU - I. V. Popov AU - S. V. Polyakov TI - Finite difference methods for continuum mechanics problems on triangular and tetrahedral grids JO - Matematičeskoe modelirovanie PY - 2003 SP - 3 EP - 12 VL - 15 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2003_15_11_a0/ LA - ru ID - MM_2003_15_11_a0 ER -
%0 Journal Article %A Yu. N. Karamzin %A I. V. Popov %A S. V. Polyakov %T Finite difference methods for continuum mechanics problems on triangular and tetrahedral grids %J Matematičeskoe modelirovanie %D 2003 %P 3-12 %V 15 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2003_15_11_a0/ %G ru %F MM_2003_15_11_a0
Yu. N. Karamzin; I. V. Popov; S. V. Polyakov. Finite difference methods for continuum mechanics problems on triangular and tetrahedral grids. Matematičeskoe modelirovanie, Tome 15 (2003) no. 11, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2003_15_11_a0/
[1] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[2] V. V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR
[3] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, Izd-vo Mosk. fiz.-tekhn. in-ta, M., 1994
[4] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Fizmatlit, M., 1994 | Zbl
[5] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR
[6] I. V. Popov, S. V. Polyakov, “Postroenie adaptivnykh neregulyarnykh treugolnykh setok dlya dvumernykh mnogosvyaznykh nevypuklykh oblastei”, Matem. modelirovanie, 14:6 (2002), 25–35 | MR | Zbl
[7] P. J. Freay, P.-L. George, Mesh Generation: application to finite elements, Hermes Science Publishing, Oxford–Paris, 2000 | MR