Stable numerical-analytical method for superstiff differential-algebraic equations
Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical-analytical representation forms of differential-algebraic equations (DAE) solutions through peer representations of spectral components, i.e. skeletal product of matrix pencils eigenvectors, are considered. Method of complete DAE solution calculation for equations with index greater than 1 are presented. The DAE superstiffness phenomenon and its properties are described. It is shown that catastrophic computational noise appears when an inverse Laplace transformation is applied to the complex signal that has no simple Laplace transform. Special time transformation is proposed, that allows to convert Taylor series into series of exponents with divisible real index. Theoretical basis is presented, programs for analytical and numerical production of these exponential series and experimental results are described.
@article{MM_2003_15_10_a2,
     author = {V. N. Gridin and V. B. Mikhailov and G. A. Kupriyanov and K. V. Mikhailov},
     title = {Stable numerical-analytical method for superstiff differential-algebraic equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {15},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_10_a2/}
}
TY  - JOUR
AU  - V. N. Gridin
AU  - V. B. Mikhailov
AU  - G. A. Kupriyanov
AU  - K. V. Mikhailov
TI  - Stable numerical-analytical method for superstiff differential-algebraic equations
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 35
EP  - 50
VL  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_10_a2/
LA  - ru
ID  - MM_2003_15_10_a2
ER  - 
%0 Journal Article
%A V. N. Gridin
%A V. B. Mikhailov
%A G. A. Kupriyanov
%A K. V. Mikhailov
%T Stable numerical-analytical method for superstiff differential-algebraic equations
%J Matematičeskoe modelirovanie
%D 2003
%P 35-50
%V 15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_10_a2/
%G ru
%F MM_2003_15_10_a2
V. N. Gridin; V. B. Mikhailov; G. A. Kupriyanov; K. V. Mikhailov. Stable numerical-analytical method for superstiff differential-algebraic equations. Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 35-50. http://geodesic.mathdoc.fr/item/MM_2003_15_10_a2/

[1] Smyshlyaeva L. G., Preobrazovanie Laplasa funktsii mnogikh peremennykh, Izd-vo LGU, L., 1981 | MR | Zbl

[2] Danilov L. V., Ryady Volterra–Pikara v teorii nelineinykh elektricheskikh tsepei, Radio i svyaz, M., 1987 | MR

[3] Mikhailov V. B., “Chislenno-analiticheskie metody modelirovaniya v lineinoi i nelineinoi postanovkakh”, Intellektualnye integrirovannye SAPR REA i BIS, Nauka, M., 1990, 67–75, Institut avtomatizatsii proektirovaniya AN SSSR

[4] Mikhailov V. B., Mironov A. M., “Otsenki skhodimosti protsessov Nyutona–Kantorovicha dlya nelineinykh sistem algebro-differentsialnykh uravnenii na chislovom promezhutke”, Intellektualnye integrirovannye SAPR REA i BIS, Nauka, M., 1990, 76–83, Institut avtomatizatsii proektirovaniya AN SSSR

[5] Gridin V. N., Mikhailov V. B., “Razvitie chislenno-analiticheskogo podkhoda v modelirovanii analogovykh skhem”, Avtomatizatsiya proektirovaniya v elektronike, Resp. mezhved. nauch.-tekhn. sb., 38, Tekhnika, Kiev, 1988, 19–31

[6] Mikhailov V. B., “Novye spektralnye razlozheniya dlya puchkov matrits i ikh svyaz s resheniem algebro-differentsialnykh sistem”, Elektronnoe modelirovanie, 1994, no. 4, 18–29

[7] Gridin V. N., Mikhailov V. B., “Fenomen sverkhzhestkosti i chislenno-analiticheskie metody resheniya differentsialno-algebraicheskikh sistem (DAS)”, Elektrodinamika i tekhnika SVCh i KVCh, 4:4(16) (1996), 13–25

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[9] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[10] Golub N. N., Razrabotka algoritmov parametricheskoi optimizatsii radioelektronnykh skhem s ispolzovaniem dekompozitsii spektralnykh zadach, Diss. kand fiz.-mat. nauk. IAP RAN, 1994

[11] Gridin V. N., Mikhailov V. B., “Paket programm skhemotekhnicheskogo proektirovaniya analogovykh SVCh-mikroskhem”, Avtomatizatsiya proektirovaniya, 1997, no. 2, 9–15